Article ID Journal Published Year Pages File Type
976926 Physica A: Statistical Mechanics and its Applications 2007 18 Pages PDF
Abstract

The archetypal bistable system can act as a nonlinear receiver for detecting binary signals modulated by amplitude, frequency, or phase. The introduction of noise enhances signal detection for a certain range of noise intensity, which is ascribed to non-conventional stochastic resonance (SR) phenomena, such as residual aperiodic SR and short-time SR. For the first time, we unify binary modulated signal detection from the point of view of an approximate probability density model. We develop both theoretical and numerical analyses of the receiver performance for each type of modulated signal. The optimization of receiver parameters and comparisons of the optimal bistable receiver versus the linear matched filter are also investigated. An interesting result is that the probability density model enables us to explore the SR range of noise intensity and the optimally-tuned bistable receiver theoretically, which may play a prominent role for nonlinear systems performing in noisy conditions.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,