Article ID Journal Published Year Pages File Type
977021 Physica A: Statistical Mechanics and its Applications 2007 9 Pages PDF
Abstract
This paper studies the Lorenz-family system which is known to establish a topological connection among the Lorenz, Chen and Lu¨ systems in the parametric space. The existence of S˘i'lnikov heterclinic orbits is proved using an undetermined coefficient method. As a consequence, the S˘i'lnikov criterion along with some technical conditions guarantees that the Lorenz-family system has both Smale horseshoes and horseshoe type of chaos. It is this heteroclinic orbit that determines the geometric structure of the corresponding chaotic attractor.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , ,