Article ID Journal Published Year Pages File Type
9776485 Synthetic Metals 2005 5 Pages PDF
Abstract
Here we report polymer diodes based on a conjugated polymer host and a dispersed molecular switch. In this case, the molecular switch is a photochromic (PC) molecule that can be reversibly switched between low and high energy gap states, triggered by exposure to ultra-violet and visible light, respectively. While dispersed inside the conjugated polymer bulk and switched to its low energy gap state, the PC molecules act as traps for holes. Solid-state blends of this PC material and conjugated polymers have been demonstrated in diodes. The state of the PC molecule controls the current density versus voltage (JV) characteristics of the resulting diode. Both poly(2-methoxy-5(2′-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) host materials have been studied. The two conjugated polymers resulted in differing JV switching characteristics. A more pronounced JV switch is observed with MEH-PPV than with P3HT. We postulate that the PC material, while switched to its low energy gap state, act as traps in both the conjugated polymers but at different trap depth energies.
Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , ,