Article ID Journal Published Year Pages File Type
977943 Physica A: Statistical Mechanics and its Applications 2008 8 Pages PDF
Abstract

The haploid–diploid cycle where, under unfavorable conditions the population becomes diploid, is modeled by a Monte-Carlo method in the framework of the Jan–Stauffer–Moseley hypothesis. Diploidy and sex may have first arisen as a way to escape death, when a simple unicellular individual is threatened by too many deleterious mutations. Using a bit string model, we find that in a system where competition is present (through the Verhulst factor), diploids dominate. In this case the transition from haploid to essentially diploid population takes place in a short time interval reminiscent of phase transitions in physical systems.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,