Article ID Journal Published Year Pages File Type
978154 Physica A: Statistical Mechanics and its Applications 2007 6 Pages PDF
Abstract
We show that there is a common mode of origin for the power laws observed in two different models: (i) the Pareto law for the distribution of money among the agents with random-saving propensities in an ideal gas-like market model and (ii) the Gutenberg-Richter law for the distribution of overlaps in a fractal-overlap model for earthquakes. We find that the power laws appear as the asymptotic forms of ever-widening log-normal distributions for the agents' money and the overlap magnitude, respectively. The identification of the generic origin of the power laws helps in better understanding and in developing generalized views of phenomena in such diverse areas as economics and geophysics.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,