Article ID Journal Published Year Pages File Type
9781641 Journal of Physics and Chemistry of Solids 2005 5 Pages PDF
Abstract
Surface-state electrons on liquid helium, localised in quantum dots, have been proposed as condensed matter qubits. We now demonstrate experimentally that small numbers of electrons, including a single isolated electron, can be held in a novel electrostatic trap above the surface of superfluid helium. A potential well is created using microfabricated electrodes in a 5 μm diameter pool of helium. Electrons are injected into the trap from an electron reservoir on a helium microchannel. They are individually detected using a superconducting single-electron transistor (SET) as an electrometer. A Coulomb staircase is observed as electrons leave the trap one-by-one until the trap is empty. A design for a prototype quantum information processor using an array of electron traps on liquid helium is presented.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , , ,