Article ID Journal Published Year Pages File Type
978332 Physica A: Statistical Mechanics and its Applications 2007 9 Pages PDF
Abstract

A modification of the classical Navier–Stokes equations has recently been proposed by Brenner [Is the tracer velocity of a fluid continuum equal to its mass velocity? Phys. Rev. E 70 (2004) Art. No. 061201; Kinematics of volume transport, Physica A 349 (2005) 11–59; Navier–Stokes revisited, Physica A 349 (2005) 60–132] and then formalized by Öttinger [Beyond Equilibrium Thermodynamics, Wiley, Hoboken, 2005]. In the modified theory, a contribution for mass diffusion is included in the continuity equation. The argument was based on experimental support from thermophoresis which however depends on the correct formulation of boundary conditions. The controversy therefore remained. Since such an additional mass diffusion transport mode should contribute to dynamic light scattering spectra, the consequences of the modified theory for light scattering spectra are discussed in this work. For liquids, the new theory is consistent with measured scattering data since the modification to the spectrum is usually negligible. The effect could, however, be observable in gases.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,