Article ID Journal Published Year Pages File Type
9783904 Materials Science and Engineering: B 2005 5 Pages PDF
Abstract
The incorporation of compressive strained Ge/tensile strained Si bi-layers in the active regions of MOSFETs is a promising route for creating ultimate Si-based devices due to the considerable increase of the mobility of spatially confined holes/electrons. The main challenge in device application is to be able to control and manipulate strain within such thin layers. This paper reports on quantitative measurements of strain in a structure consisting of a 8 nm Ge/5 nm Si heterostructure grown by chemical vapour deposition on top of a relaxed Si0.5Ge0.5 buffer layer. Geometric phase analysis of high resolution TEM images is used to measure the strain within Ge and Si layers. The in-plane stress within each layer is deduced. Experimental results are compared with the predictions of elasticity theory and discussed in terms of effect of defect formation.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,