Article ID Journal Published Year Pages File Type
978708 Physica A: Statistical Mechanics and its Applications 2006 13 Pages PDF
Abstract

This paper considers fractional generalization of finite temperature Klein–Gordon (KG) field and vector potential in covariant gauge and static temporal gauge. Fractional derivative quantum field at positive temperature can be regarded as a collection of infinite number of fractional thermal oscillators. Generalized Riemann zeta function regularization and heat kernel techniques are used to obtain the high temperature expansion of free energy associated with the fractional KG field. We also show that quantization of the fractional derivative fields can be carried out by using the Parisi–Wu stochastic quantization.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,