Article ID Journal Published Year Pages File Type
9789781 Physica E: Low-dimensional Systems and Nanostructures 2005 5 Pages PDF
Abstract
We present an optical study of excited states in single CdTe quantum dot (QDs). Using micro-photoluminescence excitation spectroscopy, absorption up to two confined excited levels have been observed in some dots. Power-dependent micro-photoluminescence is then used to study the occupation of excited states. The emission pattern is characteristic of the increase of the exciton number in the QD (shell-filling). A clear identification of the different multi-exciton complexes has been obtained in a highly symmetric dot. The evolution of the different multi-exciton intensities can then be reproduced by solving the rate equations for multi-exciton state occupancy and the fit by this simple model provides an estimate of the radiative lifetime of the different multi-exciton complexes.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,