Article ID Journal Published Year Pages File Type
9793104 Computational Materials Science 2005 8 Pages PDF
Abstract
The plastic deformation of two-phase iron-copper polycrystals was studied experimentally and modelled by a FEM model calculation, taking into account anisotropic elasticity and crystal plasticity. The two-phase materials in experiment had microstructures ranging between interpenetrating network and matrix/inclusion type and were deformed by compression at room temperature. The measured quantities (macroscopic stress and strain, elastic strains and texture) were compared with the results from the FEM model calculation. The stress vs. strain dependence as obtained from the FEM-model appears to be in good accordance with experimental results. Good predictions of the texture evolution were found in cases only, where local micromechanical interactions are not too much influenced by the heterogeneity of the microstructure. The implications of these results for the development and use of FEM schemes for modelling heterogeneous polycrystal plasticity are discussed.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,