Article ID Journal Published Year Pages File Type
9793113 Computational Materials Science 2005 9 Pages PDF
Abstract
In this contribution, we elaborate the material force method with application to standard dissipative materials, in particular crystal-(elasto)plasticity. It thereby turns out that material heterogeneities caused by the gradient of the corresponding slip parameters induce additional material volume forces. As a result, we observe that these forces contribute to computations of typical boundary value problems as e.g. the calculation of the J-integral in fracture mechanics. Their impact on numerical results is discussed by means of a straight traction free crack under mode I loading conditions whereby, special emphasis is placed on different orientations of the underlying crystalline microstructure.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,