Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9793123 | Computational Materials Science | 2005 | 12 Pages |
Abstract
A new meshless method for computing the dynamic stress intensity factors (SIFs) in continuously non-homogeneous solids under a transient dynamic load is presented. The method is based on the local boundary integral equation (LBIE) formulation and the moving least squares (MLS) approximation. The analyzed domain is divided into small subdomains, in which a weak solution is assumed to exist. Nodal points are randomly spread in the analyzed domain and each one is surrounded by a circle centered at the collocation point. The boundary-domain integral formulation with elastostatic fundamental solutions for homogeneous solids in Laplace-transformed domain is used to obtain the weak solution for subdomains. On the boundary of the subdomains, both the displacement and the traction vectors are unknown generally. If modified elastostatic fundamental solutions vanishing on the boundary of the subdomain are employed, the traction vector is eliminated from the local boundary integral equations for all interior nodal points. The spatial variation of the displacements is approximated by the MLS scheme.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Jan Sladek, Vladimir Sladek, Chuanzeng Zhang,