Article ID Journal Published Year Pages File Type
9793126 Computational Materials Science 2005 6 Pages PDF
Abstract
A parallel crack near the interface of magnetoelectroelastic bimaterials is considered. The crack is modelled by using the continuously distributed edge dislocations, which are described by the density functions defined on the crack line. With the aid of the fundamental solution for the edge dislocation, the present problem is reduced to a system of singular integral equations, which can be numerically solved by using the Chebyshev numerical integration technique. Then, the stress intensity factor (SIF), the magnetic induction intensity factor (MIIF) and the electric displacement intensity factor (EDIF) at the crack tips are evaluated. Using these fracture criteria, the cracking behaviour of magnetoelectroelastic bimaterials is investigated. Numerical examples demonstrate that the interface, mechanical load, magnetic load and material mismatch condition are all important factors affecting the fracture toughness of the magnetoelectroelastic bimaterials.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,