Article ID Journal Published Year Pages File Type
979429 Physica A: Statistical Mechanics and its Applications 2008 8 Pages PDF
Abstract
In this paper, taking about 7 years’ high-frequency data of the Shanghai Stock Exchange Composite Index (SSEC) as an example, we propose a daily volatility measure based on the multifractal spectrum of the high-frequency price variability within a trading day. An ARFIMA model is used to depict the dynamics of this multifractal volatility (MFV) measures. The one-day ahead volatility forecasting performances of the MFV model and some other existing volatility models, such as the realized volatility model, stochastic volatility model and GARCH, are evaluated by the superior prediction ability (SPA) test. The empirical results show that under several loss functions, the MFV model obtains the best forecasting accuracy.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,