Article ID Journal Published Year Pages File Type
9795265 Materials Characterization 2005 8 Pages PDF
Abstract
The effects of the process parameters, including deformation temperature and strain rate, on the deformation behavior and microstructure of an Al-4Cu-Mg alloy, have been investigated through isothermal compression. Experiments were conducted at deformation temperatures of 540 °C, 560 °C, and 580 °C, strain rates of 1 s−1, 1×10−1 s−1, 1×10−2 s−1, and 1×10−3 s−1, and height reductions of 20%, 40%, and 60%. The experimental results show that deformation temperature and strain rate have significant effect on the peak flow stress. The flow stress decreases with an increase of deformation temperature and/or a decrease of the strain rate. Above a critical value of the deformation temperature, the flow stress quickly reaches a steady value. Experimental materials A and B have equiaxed and irregular grains, respectively, prior to deformation. The microstructures vary with the process parameters in the semi-solid state. For material B, the irregular grains transform to equiaxed grains in the process of semi-solid deformation, which improves the deformation behavior.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,