Article ID Journal Published Year Pages File Type
9795628 Materials Science and Engineering: A 2005 4 Pages PDF
Abstract
Microstructural influence on low-temperature superplastic behavior of ultrafine-grained Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) was investigated. The deformed structures were analyzed with the increment of strain by transmission electron microscopy. Also, a series of tensile tests were carried out on ultrafine-grained (UFG) samples to measure elongation at temperature of 973 K and at strain rates of 10−4 to 10−2 s−1. The results indicated that elongation was significantly increased with increasing ECAP straining from 4 to 8 revealing more high-angle grain boundaries. Deformation mechanisms for UFG structure were analyzed in the context of inelastic deformation theory, which consisted of dislocation glide and grain boundary sliding.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,