Article ID Journal Published Year Pages File Type
9796099 Materials Science and Engineering: A 2005 4 Pages PDF
Abstract
We study a mathematical model describing dislocation dynamics in crystals. This phase-field model is based on the introduction of a core tensor which mollifies the singular field on the core of the dislocation. We present this model in the case of the motion of a single dislocation, without cross-slip. The dynamics of a single dislocation line, moving in its slip plane, is described by an Hamilton-Jacobi equation whose velocity is a non-local quantity depending on the whole shape of the dislocation line. Introducing a level sets formulation of this equation, we prove the existence and uniqueness of a continuous viscosity solution when the dislocation stays a graph in one direction. We also propose a numerical scheme for which we prove that the numerical solution converges to the continuous solution.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,