Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9796502 | Materials Science and Engineering: A | 2005 | 9 Pages |
Abstract
In this paper, the authors present a new near-beta forging process, in which materials are heated at about 15 °C below the beta transus, to improve the combined properties of titanium alloys. Materials processed by the near-beta forging process, followed by rapid water-cooling, then high temperature toughening and low temperature strengthening heat treatments, produce a new kind of microstructure for titanium alloys. This new tri-modal microstructure consists of about 15% equiaxed alpha, 50-60% lamellar alpha and transformed beta matrix. Materials with tri-modal microstructure show a high low cycle fatigue property, high creep-fatigue interaction life, high fracture toughness and a high service temperature without decreasing ductility and thermal stability. The experimental fundamentals of the new process and the strengthening and toughening mechanism have been discussed. A critical issue in the practical application of the near-beta forging process is the control of temperature. A new metallographic inspection method was proposed to solve this problem. This new near-beta forging process has been reliably applied to produce several aeroengine compressor disks, rotators, and other airplane components.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Y.G. Zhou, W.D. Zeng, H.Q. Yu,