Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9801399 | Science and Technology of Advanced Materials | 2005 | 6 Pages |
Abstract
Nanoparticles of anatase titania were synthesized by the thermal decomposition of titanium (IV) n-butoxide in 1,4-butanediol. The powder obtained was characterized by various characterization techniques, such as XRD, BET, SEM and TEM, to confirm that it was a collection of single crystal anatase with particle size smaller than 15Â nm. The synthesized titania was employed as catalyst for the photodegradation of diuron, a herbicide belonging to the phenylurea family, which has been considered as a biologically active pollutant in soil and water. Although diuron is chemically stable, degradation of diuron by photocatalyzed oxidation was found possible. The conversions achieved by titania prepared were in the range of 70-80% within 6Â h of reaction, using standard UV lamps, while over 99% conversion was achieved under solar irradiation. The photocatalytic activity was compared with that of the Japanese Reference Catalyst (JRC-TIO-1) titania from the Catalysis Society of Japan. The synthesized titania exhibited higher rate and efficiency in diuron degradation than reference catalyst. The results from the investigations by controlling various reaction parameters, such as oxygen dissolved in the solution, diuron concentration, as well as light source, suggested that the enhanced photocatalytic activity was the result from higher crystallinity of the synthesized titania.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Jitlada Klongdee, Wansiri Petchkroh, Kosin Phuempoonsathaporn, Piyasan Praserthdam, Alisa S. Vangnai, Varong Pavarajarn,