| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 9803337 | Journal of Alloys and Compounds | 2005 | 6 Pages |
Abstract
The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
Hyo-Joung Seol, Kuk-Hyeon Son, Chin-Ho Yu, Yong Hoon Kwon, Hyung-Il Kim,
