Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9812487 | Thin Solid Films | 2005 | 7 Pages |
Abstract
A dual ion beam system is used to produce hard nanocomposite TiN/Si3N4 coatings on Si. Cross-sectional high resolution transmission electron microscopy analysis of the coatings shows that ion assistance causes microstructure to change from the non-assisted columnar form to one where there are small crystals present in an amorphous percolation network. For an unheated Si substrate, the microhardness increases with increasing ion-assist energy from 24 to 29 GPa, whereas for a deposition substrate at 400 °C, the microhardness values are 7-8 GPa or higher. The value of microhardness does not change even when coatings are annealed in vacuum at 1000 °C, showing that these coatings have high thermal stability. X-ray photoelectron spectroscopy data indicate that the -Ti-N-Si- bonds expected when the percolation network is formed are present only for substrate temperatures above 600 °C and that Ti-Si bonds form at lower temperature and during excess ion bombardment.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
J.S. Colligon, V. Vishnyakov, R. Valizadeh, S.E. Donnelly, S. Kumashiro,