Article ID Journal Published Year Pages File Type
9817807 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2005 8 Pages PDF
Abstract
Ultra high molecular weight polyethylene (UHMWPE) materials have been used successfully as one half of the bearing couple (against metallic alloys or ceramics) in total hip and total knee joint replacements for four decades. This review describes the impact of ionizing radiation (used for sterilization and for microstructural modification via crosslinking) on the performance of UHMWPE total joint replacement components. Gamma radiation sterilization in air leads to oxidative degradation of UHMWPE joint components that occurs during shelf-aging and also during in vivo use. Efforts to mitigate oxidative degradation of UHMWPE joint components include gamma radiation sterilization in inert barrier-packaging and processing treatments to reduce free radicals. Ionizing radiation (both gamma and electron-beam) has recently been used to form highly crosslinked UHMWPEs that have better adhesive and abrasive wear resistance than non-crosslinked UHMWPE, thereby potentially improving the long-term performance of total joint replacements. Along with increased wear resistance, however, there are deleterious changes to ductility and fracture resistance of UHMWPE, and an increased risk of fracture of these components remains a clinical concern.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, ,