Article ID Journal Published Year Pages File Type
9817887 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2005 4 Pages PDF
Abstract
Synthetic membranes as dermal equivalent can be applied at in vitro studies for developing new transdermal drugs or cosmetics. These membranes could be composed to mimic the dermis and seed cultivated keratinocytes as epidermal layer on it. The endothelial cells ingrowth to promote neovascularization and fibroblasts ingrowth to promote the substitution of this scaffold by natural components of the dermis. As, they can mimic the scaffold function of dermis; the membranes with biological interaction could be used for in vivo studies as dermal equivalent. For this application, poly(vinyl alcohol) (PVAl) membranes crosslinked by gamma radiation were swelled with chitosan solution. PVAl do not interact with the organism when implanted and is intended to mimic the mechanical characteristics of the dermal scaffold. The chitosan as a biocompatible biosynthetic polysaccharide were incorporated into PVAl membranes to improve the organism response. Degradation of chitosan by the organism occurs preferably by hydrolysis or enzymatic action, for example, by lysozyme. For this purpose the swelling kinetic of PVAl membranes with chitosan solution were performed and it was verified their degradation in vitro. The results showed that the swelling equilibrium of the PVAl membranes with chitosan membranes was reached in 120 h with average swelling of 1730%. After swelling, PVAl and chitosan/PVAl membranes were dried and immersed in phosphate buffer solution pH 5.7 and pH 7.4, with and without lysozyme, as those pH values are the specific physiologic pH for external skin and the general physiological pH for the organism, respectively. It was verified that the pure PVAl membrane did not showed change in their mass during 14 days. PVAl membranes swelled with chitosan solution showed mass decrease from 1 to 14 days inside these solutions. The highest mass decrease was verified at pH 5.7 in phosphate buffer solution without lysozyme. The smallest mass decrease was verified at pH 7.4 in phosphate buffer solution without lysozyme. In general, PVAl membranes swelled with chitosan solution showed a clear mass decrease at pH 5.7.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , ,