Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9823219 | Acta Astronautica | 2005 | 5 Pages |
Abstract
Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.
Related Topics
Physical Sciences and Engineering
Engineering
Aerospace Engineering
Authors
Christopher C. DeBoy, J. Robert Jensen, Mark S. Asher,