Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9824468 | Annals of Nuclear Energy | 2005 | 16 Pages |
Abstract
In the present paper, we show that the network ability in correctly reproducing as output the given input after a passage through the bottleneck layer (which by definition should have fewer nodes than either input or output layers) could be conceived as a topological mapping between abstract spaces. Apart from the less critical choice of the number of nodes in the mapping and demapping layers, the topological mapping will be successful - and the AANN will be able to perform the required data reconstruction - provided that the number of nodes of the bottleneck layer is related to the dimensionality d of the abstract projection space. We show how to obtain a numerical estimate d* for the real dimension d. This numerical estimate will firmly base the choice of the number of nodes f of the bottleneck layer, thus avoiding the usual troubling trial-and-error procedure. The power of the proposed approach is demonstrated firstly on a few geometrical cases and then on the analysis of nuclear transients simulated by the classic Chernick's model.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
M. Marseguerra, A. Zoia,