Article ID Journal Published Year Pages File Type
9825059 Energy 2005 10 Pages PDF
Abstract
In this study, the effects of hydrogen peroxide on laminar, premixed, methane-air flames at atmospheric pressure and temperature were investigated using CHEMKIN III and GRI 3.5 mechanism. The range of fuel/air equivalence ratio (φ) was varied from 0.6 to 1.2, and the amount of hydrogen peroxide was altered from 0% to 20% volumetric fraction of the methane-hydrogen peroxide (air excluded) mixture. The burning velocity was found to increase with increasing hydrogen peroxide addition, with a relatively larger increase for the fuel-richer mixtures (ΔSu up to 15 cm/s for φ≈1.2). The adiabatic flame temperature rose with hydrogen peroxide addition, and the temperature rise per unit hydrogen peroxide addition was more significantly (ΔT up to 100 K) for the leaner mixtures. For the same mixture stoichiometry, adding hydrogen peroxide also increased CO concentration and NOx emissions somewhat. Accordingly, the benefits of adding hydrogen peroxide to the combustion conditions considered here can be best realized by burning leaner mixtures.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, ,