Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9825442 | Progress in Nuclear Energy | 2005 | 8 Pages |
Abstract
For the development of 45w%Pb-55w%Bi cooled direct contact boiling water small fast reactor (PBWFR), Pb-Bi-water direct contact boiling two-phase flow loop has been fabricated and operated. The loop consists of a Pb-Bi flow loop (four heater pin bundle, a chimney, an upper plenum, a level meter tank, an air-water cooler, and an electromagnetic flow meter) and a water-steam flow loop (a pump, a preheated, an injection nozzle, the chimney, the upper plenum with mist separators and dryers, a condenser, a buffer tank, and an air-water cooler). At the rated operating condition system pressure is 7 MPa. The sub-cooled water was injected into a Pb-Bi flow in the chimney. A power of the heater pin bundle was controlled to obtain the inlet and outlet temperatures of the heater bundle. The Pb-Bi and steam flows were simulated analytically using one-dimensional models of frictional and form losses and a drag force. The Pb-Bi-steam two-phase frictional pressure loss was calculated by means of the two-phase flow multiplication factor of Lockhart-Martinelli model. It was found that Pb-Bi temperature decreased quickly in the chimney due to high heat transfer rate of Pb-Bi-water direct contact boiling. The volumetric overall heat transfer coefficient was 60-310 kW/m3K, and decreased with the superheat.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
M. Takahashi, H. Sofue, T. Iguchi, Y. Pramono, F. Huang, Novitrian Novitrian, M. Matsumoto, T. Matsuzawa, S. Uchida,