Article ID Journal Published Year Pages File Type
9828571 Planetary and Space Science 2005 5 Pages PDF
Abstract
The deposition of energy, escape of atomic and molecular nitrogen and heating of the upper atmosphere of Titan are studied using a Direct Simulation Monte Carlo method. It is found that the globally averaged flux of deflected magnetospheric atomic nitrogen ions and molecular pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. The energy deposition in this region determines the atmospheric loss and the production of the nitrogen neutral torus. The temperature structure near the exobase is also calculated. It is found that, due to the inclusion of the molecular pickup ions more energy is deposited closer to the exobase than assumed in earlier plasma ion heating calculations. Although the temperature at the exobase is only a few degrees larger than it is at depth, the density above the exobase is enhanced by the incident plasma.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, ,