Article ID Journal Published Year Pages File Type
9829305 Journal of Crystal Growth 2005 9 Pages PDF
Abstract
High-resistance (HR) GaN templates for AlGaN/GaN heterojunction field effect transistor (HFET) applications were grown using organometallic vapor phase epitaxy. The GaN sheet resistance was tuned using final nucleation layer (NL) annealing temperature and NL thickness. Using an annealing temperature of 1033 °C and NL thickness of 26 nm, GaN with sheet resistance of 1010 Ω/sq was achieved, comparable to that of Fe-doped GaN. Material characterization results show that the high-resistance GaN is achieved due to compensating acceptor levels that may be introduced through edge-type threading dislocations. Optimization of annealing temperature and NL thickness provided a means to maximize GaN sheet resistance without significantly degrading material quality. In situ laser reflectance was used to correlate the NL properties to sheet resistance and material quality, providing a figure of merit for expected sheet resistance. AlGaN/GaN HFET layers grown using HR GaN templates with Rs of 1010 Ω/sq gave surface and interface roughness of 14 and 7 Å, respectively. The 2DEG Hall mobility and sheet charge of HFETs grown using HR GaN templates was comparable to similar layers grown using unintentionally doped (UID) GaN templates.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,