Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9829647 | Journal of Crystal Growth | 2005 | 10 Pages |
Abstract
The morphology and chemistry of epitaxial MgB2 thin films grown using reactive Mg evaporation on different substrates have been characterized by transmission electron microscopy methods. For polycrystalline alumina and sapphire substrates with different surface planes, an MgO transition layer was found at the interface region. No such layer was present for films grown on MgO and 4-H SiC substrates, and none of the MgB2 films had any detectable oxygen incorporation nor MgO inclusions. High-resolution electron microscopy revealed that the growth orientation of the MgB2 thin films was closely related to the substrate orientation and the nature of the intermediary layer. Electrical measurements showed that very low resistivities (several μΩ cm at 300 K) and high superconducting transition temperatures (38 to 40 K) could be achieved. The correlation of electrical properties with film microstructure is briefly discussed.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Lin Gu, Brian H. Moeckly, David J. Smith,