Article ID Journal Published Year Pages File Type
9841665 Physica C: Superconductivity and its Applications 2005 7 Pages PDF
Abstract
It is in particular of importance for HTS coils to secure a larger central magnetic field, a large stored energy, etc. with shorter length of HTS tapes. The critical current of an HTS tape depends on both the flux density and the flux angle with respect to tapes. In view of this, the performance improvement of HTS coils is taken into account with an analytical model. As a coil shape, the minimum volume coil derived from the Fabry Factor constant curve is taken up, which is often employed at low temperature coils. The electric field distribution within a coil cross-section is calculated to examine effects on a current carrying capability. It is clear that high electric field portions appear at the coil edge region due primarily to inclined magnetic fluxes against HTS tapes. Considering this, a grade winding method of a coil is proposed, where the winding density of conductors is reduced at coil edge portions. With this coil winding structure, the critical current of an HTS coil is improved since the magnetic field is reduced at edge portions. The stored energy per HTS tape length and the central magnetic field of the coil can be remarkably increased by this kind of grade winding method.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,