Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9854755 | Nuclear Physics B | 2005 | 40 Pages |
Abstract
We work out the relation between Chern-Simons, 2d Yang-Mills on the cylinder, and Brownian motion. We show that for the unitary, orthogonal and symplectic groups, various observables in Chern-Simons theory on S3 and lens spaces are exactly given by counting the number of paths of a Brownian particle wandering in the fundamental Weyl chamber of the corresponding Lie algebra. We construct a fermionic formulation of Chern-Simons on S3 which allows us to identify the Brownian particles as B-model branes moving on a noncommutative two-sphere, and construct 1- and 2-matrix models to compute Brownian motion ensemble averages.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
Sebastian de Haro,