Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9867174 | Annals of Physics | 2005 | 18 Pages |
Abstract
Behavior of doped fermions in Z2 gauge theories for the quantum dimer and eight-vertex models is studied. Fermions carry charge and spin degrees of freedom. In the confinement phase of the Z2 gauge theories, these internal symmetries are spontaneously broken and a superconducting or Neél state appears. On the other hand in the deconfinement-topologically ordered state, all symmetries are respected. From the view point of the quantum dimer and eight-vertex models, this result indicates interplay of the phase structure of the doped fermions and background configuration of the dimer or the eight-vertex groundstate. At the quantum phase transitions in these systems, structure of the doped fermions groundstate and also that of the background dimer or eight-vertex groundstate both change. Translational symmetry breaking induces a superconducting or antiferromagnetic state of the doped fermions.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
Ikuo Ichinose, Daisuke Yoshioka,