Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9868428 | Physics Letters A | 2005 | 7 Pages |
Abstract
Traveling wave solutions (TWSs) are investigated for transverse propagation in a class of nonlinear viscoelastic media. Specifically, the propagation speed and shock thickness are determined, it is shown that vortex sheet formation occurs as the Reynolds number tends to infinity, and a special case exact solution is obtained and analyzed. Most significantly, it is proved that stable, transverse TWSs are possible only in super-Hookean media (i.e., media in which the fourth elastic modulus is positive) and that the propagation speed is a minimum when the limit at +â is zero.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
P.M. Jordan, Ashok Puri,