Article ID Journal Published Year Pages File Type
9877506 Physica D: Nonlinear Phenomena 2005 28 Pages PDF
Abstract
We focus on a detailed mathematical study, combining numerical pathfollowing and bifurcation analysis, of chaotic dynamics and transitions to chaotic dynamics. Numerical continuation makes clear how homoclinic and heteroclinic bifurcations organize the bifurcation diagram in the parameter plane. Combined with a theoretical bifurcation analysis this explains the development of patterns and the creation of chaotic spatio-temporal dynamics in the model. The organizing centers, such as heteroclinic cycles with resonance conditions among eigenvalues and homoclinic loops with geometric degeneracies (inclination flips), are identified and their unfoldings are analyzed. This ties the creation of strange attractors of various geometric structures to codimension-two global bifurcations.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,