Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9877528 | Physica D: Nonlinear Phenomena | 2005 | 24 Pages |
Abstract
The nonlinear dynamics of the flow in a short annular container driven by the rotation of the inner cylinder is studied using direct numerical simulations of the three-dimensional Navier-Stokes equations. The basic state is SO(2)ÃZ2 symmetric. For aspect ratios between 3.6 and 4.4, we have located three codimension-two bifurcations: a cusp, a double Hopf and a fold-Hopf bifurcation. All these local bifurcations are Z2-invariant. The breaking of Z2 symmetry involves very complex Shil'nikov-type dynamics, not directly connected to any of the three codimension-two bifurcations, but associated with five unstable limit cycles and a wealth of heteroclinic connections between them. Period-adding cascades, both direct and reverse, of 2-tori have been found. Narrow regions of chaotic dynamics are interspersed within these quasiperiodic solutions.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Juan M. Lopez, Francisco Marques,