Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9879444 | Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease | 2005 | 10 Pages |
Abstract
Flavonoids may be a principal contributor to the cancer preventative activity of fruit- and vegetable-rich diets and there is interest in their use as dietary supplements. However, there is potential conflict between the cytoprotective and cytotoxic activities of flavonoids, and their efficacy as anti-cancer agents is unresolved. Here, the integrity and survival of HL-60 promyelocytic leukaemia cells following short-term (90 min) exposure to the dietary abundant flavonoid kaempferol (1-100 μM) is reported. Supplementation initially decreased reactive oxygen levels but, paradoxically, a dose-dependent increase in single-strand DNA breakage occurred. However, there was no increase in oxidised DNA purines or membrane damage. Following a 24-h recovery period in non-kaempferol supplemented media, DNA single-strand breakage had declined and kaempferol exposed and control cultures possessed similar reactive oxygen levels. A reduction in 3H-thymidine incorporation occurred with â¥10 μM kaempferol. One hundred micromolar kaempefrol increased the proportion of cells in G2-M phase, the proportion of cells with a sub-G1 DNA content and enhanced 'active' caspase-3 expression but only induced a loss of mitochondrial membrane potential within a minority of cells. The relevance of induced DNA damage within a non-overtly oxidatively stressed environment to the disease preventative and therapeutic use of kaempferol is discussed.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Ageing
Authors
Charles S. Bestwick, Lesley Milne, Lynn Pirie, Susan J. Duthie,