Article ID Journal Published Year Pages File Type
9910086 Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2005 17 Pages PDF
Abstract
We have previously shown that C57BL/6J-Min/+ (multiple intestinal neoplasia) mice, heterozygous for the Min mutation in the adenomatous polyposis coli gene, were more susceptible to intestinal tumorigenesis and had higher intestinal PhIP-DNA adduct levels after exposure to the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) on day 12 than on day 36 after birth [I.-L. Steffensen, H.A.J. Schut, J.E. Paulsen, Å. Andreassen, J. Alexander, Intestinal tumorigenesis in multiple intestinal neoplasia mice induced by the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine: perinatal susceptibility, regional variation, and correlation with DNA adducts, Cancer Res. 61 (200l) 8689-8696]. In the present study, we have evaluated further whether this difference in susceptibility is related to adduct formation/removal, cell proliferation, apoptosis or expression of the nucleotide excision repair protein Xeroderma pigmentosum group A (XPA) in the intestines. Min/+ and +/+ (wild-type) mice were given a subcutaneous injection of 50 mg/kg bw PhIP on day 12 or 36, and the levels of PhIP-DNA adducts after 8, 12, 24 h, 3 or 7 days were quantified by use of 32P-postlabelling. In Min/+ mice, adduct levels were significantly higher after exposure on day 12 than on day 36 in the middle (1.5- to 8.5-fold) and distal (1.3- to 6.5-fold) small intestine from 8 h to 3 days after administration of PhIP, but not in the colon and proximal small intestine. In the liver - a non-target organ for PhIP - adduct levels were 2.0- to 7.5-fold higher after exposure on day 12 than on day 36 from 8 to 24 h after exposure. Adduct levels were generally higher in the middle (1.1- to 1.8-fold) and distal (1.1- to 2.0-fold) small intestines of Min/+ compared with +/+ mice after PhIP exposure on day 12, i.e. in the area of the intestines previously found also to have the highest number of tumors in Min/+ mice. PhIP increased cell proliferation and the number of apoptotic cells in the intestine and liver. However, the higher susceptibility to intestinal tumorigenesis in Min/+ mice exposed to PhIP at early age, or in Min/+ mice compared with +/+ mice, could not be explained by differences in cell proliferation, apoptosis or expression of the XPA repair protein.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , ,