Article ID Journal Published Year Pages File Type
9914918 Molecular and Cellular Endocrinology 2005 13 Pages PDF
Abstract
In a search for improved therapies for prostate cancer, we investigated the effect of genistein in combination with 1α-25-dihydroxyvitamin D3 [1,25(OH)2D3], on the growth of DU145 human prostate cancer cells. DU145 cells were very resistant to the growth inhibitory action of 1,25(OH)2D3 or genistein when administered individually. However, the combination caused a significant growth inhibition seen at lower concentrations of both agents. 1,25(OH)2D3 induces the expression of the CYP24 gene, which codes for the enzyme that initiates the catabolism of 1,25(OH)2D3. We showed for the first time that genistein at low doses (50-100 nM) directly inhibited CYP24 at the enzyme level. Addition of genistein to mitochondrial preparations inhibited CYP24 enzyme activity in a noncompetitive manner. CYP24 inhibition by genistein increased the half-life of 1,25(OH)2D3 thereby augmenting the homologous up-regulation of the vitamin D receptor (VDR) both at the mRNA and protein levels. Genistein co-treatment enhanced 1,25(OH)2D3-mediated transactivation of the vitamin D responsive reporters OC-Luc and OP-Luc transfected into DU145 cells. Consistent with the growth inhibition due to the combination treatment, significant changes in the expression of genes involved in growth arrest and apoptosis were seen. We conclude that genistein potentiates the antiproliferative actions of 1,25(OH)2D3 in DU145 cells by two mechanisms: (i) an increase in the half-life of 1,25(OH)2D3 due to the direct inhibition of CYP24 enzyme activity and (ii) an amplification of the homologous up-regulation of VDR. Together these two effects lead to a substantial enhancement of the cellular responses to the growth inhibitory and pro-apoptotic signaling by 1,25(OH)2D3.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,