Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9920986 | European Journal of Pharmacology | 2005 | 9 Pages |
Abstract
In absence of receptor cycling, human/rat neuropeptide Y was found to persistently occupy the guinea pig neuropeptide Y Y1 receptors expressed on the surface of Chinese hamster ovary (CHO) cells (IC50 â¼Â 8 nM); a lasting occupancy was also evident with active receptor cycling. A similar blockade was obtained with the human neuropeptide Y Y1 receptor (in CHO or SK-N-MC cells). Peptidic antagonists GR238118 (1229U91) and VD-11 blocked the Y1 receptor in the same molarity range. A neuropeptide Y-related Y1 agonist, (Leu31Pro34) human neuropeptide Y, also strongly adhered to the Y1 site. Similar blockade-like occupancy by neuropeptide Y was found with particulates from Y1-expressing CHO cells, and with native neuropeptide Y Y1 receptors of rat synaptosomes. Peptide YY and a related Y1-selective agonist, (Leu31Pro34) human peptide YY, showed a much less stable binding to the neuropeptide Y Y1 receptor with either the intact cells or particulates. The Y1 binding of neuropeptide Y was also less sensitive to chaotropic agents and guanine nucleotides than the binding of peptide YY, indicating a larger stability for association of neuropeptide Y with the receptor. Inhibition of forskolin-stimulated adenylyl cyclase showed a distinctly attenuating agonism for neuropeptide Y, with an activity similar to peptide YY below 1 nM, but considerably lower above 3 nM of the peptides. This activity was largely exerted via pertussis toxin-sensitive G-proteins of Y1-CHO cells. Our findings indicate that signaling by neuropeptide Y via its Y1 receptor could be self-restricting at higher levels of the peptide, in relation to a strong association of the agonist with the Y1 binding site.
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Renu Sah, Ambikaipakan Balasubramaniam, Michael S. Parker, Floyd Sallee, Steven L. Parker,