Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9921136 | European Journal of Pharmacology | 2005 | 8 Pages |
Abstract
Previous studies have demonstrated that classical benzodiazepines decrease hypothalamic-pituitary-adrenocortical cortex (HPA) axis activity. Paradoxically, high doses of benzodiazepines also stimulate basal circulating corticosterone levels in some conditions. Because benzodiazepine agonists display little selectivity to any of the α subtypes of the γ-amino butyric acid (GABA)A receptor to which they bind, we propose that the unequivocal results are due to an α subtype-dependent modulation of the hypothalamic-pituitary-adrenocortical cortex axis output. To test this, basal hormonal output and induction of Fos in the hypothalamic paraventricular nucleus were measured after administration of various benzodiazepine ligands in mice. Zolpidem, a selective α1 subtype agonist, produced a very strong increase in plasma adrenocorticotropic hormone and corticosterone whereas the inverse agonist FG7142 induced a small rise in plasma corticosterone. More surprisingly, the non-selective full agonists diazepam and zopiclone induced a lower increase in circulating corticosterone than after zolpidem. In contrast, the α2,3,5-selective benzodiazepine agonist and α1 antagonist L-838,417 had no effect on corticosterone levels. Strong induction of Fos in the paraventricular nucleus was found in response to zolpidem, diazepam, and zopiclone, but not after L-838,417. Finally, pre-administration of L-838,417 prior to zolpidem strongly inhibited the effect of zolpidem on corticosterone. Likewise, the non-selective agonists diazepam and zopiclone at a dose that alone had no effect on corticosterone also inhibited the effect of zolpidem. Taken together, these results suggest that benzodiazepine ligands modulate the hypothalamic-pituitary-adrenocortical cortex axis through partly opposite mechanisms; and that the net effect is dependent on the composition of the GABAA receptor subunits to which they bind.
Keywords
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Jens D. Mikkelsen, Andreas Søderman, Alexander Kiss, Naheed Mirza,