Article ID Journal Published Year Pages File Type
9921210 European Journal of Pharmacology 2005 7 Pages PDF
Abstract
The role of prostaglandins in mechanical scratching-induced cutaneous barrier disruption in mice was investigated. Skin prostaglandins contents were measured after cutaneous barrier function was disrupted by scratching using a stainless-steal wire brush (mechanical scratching), then effects of prostanoids on recovery of cutaneous barrier functions were examined. This mechanical scratching increased transepidermal water loss and skin prostaglandins (prostaglandin D2, prostaglandin E2, 6-keto-prostaglandin F1α and prostaglandin F2α) contents, count-dependently. Topical application of indomethacin immediately after cutaneous barrier disruption delayed the recovery period of cutaneous barrier disruption. We examined effects of several prostanoids (prostaglandin D2, prostaglandin E2, prostaglandin F2α, prostaglandin I2 and U46619) on delay of the recovery process of mechanical scratching-induced cutaneous barrier disruption with treatment of indomethacin. Topically applied prostaglandin D2 and prostaglandin E2 accelerated the recovery of cutaneous barrier disruption and topical application of prostaglandin J2, limaprost, sulprostone and ONO-4819, but not 13,14-dihydro-15-keto-prostaglandin D2, 15-deoxy-Δ12,14-prostaglandin J2, 17-phenyl-trinor-prostaglandin E2 or butaprost had effects on recovery of the cutaneous barrier. These results suggest that prostaglandin D2 and prostaglandin E2 accelerate the recovery process of cutaneous barrier disruption caused by mechanical scratching, via specific prostanoid DP1, EP3 and EP4 receptors.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , ,