Article ID Journal Published Year Pages File Type
9921271 European Journal of Pharmacology 2005 6 Pages PDF
Abstract
We have found that honokiol [4-allyl-2-(3-allyl-4-hydroxy-phenyl)-phenol] can promote neurite outgrowth and mobilize intracellular Ca2+ store in primary cultured rat cortical neurons. In this study, we examined the effects of honokiol on extracellular signal-regulated kinases (ERK1/2) and Akt, and their possible relationship to neurite outgrowth and Ca2+ mobilization. Honokiol-induced neurite outgrowth in the cultured rat cortical neurons was significantly reduced by PD98059, a mitogen-activated protein kinase kinase (MAPKK, MAPK/ERK kinase MEK, direct upstream of ERK1/2) inhibitor, but not by LY294002, a phosphoinositide 3-kinase (PI3K, upstream of Akt) inhibitor. Honokiol also significantly enhanced the phosphorylation of ERK1/2 in a concentration-dependent manner, whereas the effect of honokiol on Akt phosphorylation was characterized by transient enhancement in 10 min and lasting inhibition after 30 min. The phosphorylation of ERK1/2 enhanced by honokiol was inhibited by PD98059 as well as by KN93, a Ca2+/calmodulin-dependent kinase II (CaMK II) inhibitor. Moreover, the products of the phosphoinositide specific phospholipase C (PLC)-derived inositol 1,4,5-triphosphate (IP3) and 1,2-diacylglycerol (DAG) were measured after honokiol treatment. Together with our previous findings, these results suggest that the signal transduction from PLC, IP3, Ca2+, and CaMK II to ERK1/2 is involved in honokiol-induced neurite outgrowth.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , ,