Article ID Journal Published Year Pages File Type
9921294 European Journal of Pharmacology 2005 7 Pages PDF
Abstract
Nitric oxide (NO) donors could constitute an alternative to inhaled NO as treatment in some patients with pulmonary hypertension. Therefore, the present study investigated the relaxation mechanisms of a novel NO donor, 3-(3-chloro-2-methylphenyl)-5-[[4-methylphenyl)sulphonyl]amino]-)hydroxide (GEA 3175) in segments of human pulmonary arteries and bronchioles, which were mounted in microvascular myographs. GEA 3175 induced concentration-dependent relaxations and was more potent in pulmonary arteries than in bronchioles. A blocker of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), and iberiotoxin, a blocker of large-conductance calcium-activated K channels, both reduced relaxations induced by GEA 3175 in pulmonary arteries and bronchioles. Combining of ODQ and iberiotoxin did not produce additional inhibition. GEA 3175 relaxation is mediated through guanylyl cyclase-dependent mechanisms followed by activation of large-conductance calcium-activated K+ channels. The dilatation of both pulmonary small arteries and airways by GEA 3175 seems advantageous, if it is considered administered as inhalation therapy for pulmonary hypertension.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,