Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9921508 | European Journal of Pharmacology | 2005 | 6 Pages |
Abstract
ABT-594 ((R)-5-(2-azetidinylmethoxy)-2-chloropyridine) represents a novel class of broad-spectrum analgesics whose primary mechanism of action is activation of the neuronal nicotinic acetylcholine receptors. The present study characterized the effects of ABT-594 in a rat chemotherapy-induced neuropathic pain model, where it attenuated mechanical allodynia with an ED50=40 nmol/kg (i.p.). This anti-allodynic effect was not blocked by systemic (i.p.) pretreatment with naloxone but was blocked completely with mecamylamine. Pretreatment with chlorisondamine (0.2-5 μmol/kg, i.p.) only partially blocked the effects of ABT-594 at the higher doses tested. In contrast, central (i.c.v.) pretreatment with chlorisondamine completely blocked ABT-594's anti-allodynic effect. Taken together, the data demonstrate that ABT-594 has a potent anti-allodynic effect in the rat vincristine model and that, in addition to its strong central site of action, ABT-594's effects are partially mediated by peripheral nicotinic acetylcholine receptors in this animal model of chemotherapy-induced neuropathic pain.
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
James J. III, Carrie L. Wade, Joseph P. Mikusa, Michael W. Decker, Prisca Honore,