Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9952821 | Journal of the Mechanical Behavior of Biomedical Materials | 2018 | 42 Pages |
Abstract
Scalable novel beta phase polyvinylidene fluoride-poly(methyl methacrylate) (PVDF-PMMA) polymer blend based nanocomposite foam with hydroxyapatite (HAp) and titanium dioxide (TiO2) as nanofillers (β-PVDF-PMMA/HAp/TiO2) (β-PPHT-f), was prepared by using salt etching assisted solution casting method. The prepared β-PPHT-f nanocomposite material was characterized using XRD, FT-IR, SEM-EDS. The XRD and FTIR results confirmed the formation of β phase of β-PPHT-f. The SEM and EDS results confirmed the formation of high porous structured closed cell type morphology of β-PPHT-f. It also, confirmed the uniform distribution of Ti, Ca, P, N and O, in β-PPHT-f. Contact angle measurements performed using sessile drop method with water and EDTA treated blood (EDTA blood) as probe liquids revealed that β-PPHT-f is hydrophilic with contact angle of 48.2° as well as hemophilic with contact angle of 13.7°. Porosity, fluid absorption and retention investigation by gravimetric analysis revealed that β-PPHT-f was 89.2% porous and can absorb and retain 139.15% and 87.05% of water and blood, respectively. The hemolysis assay performed as per ASTM F756 procedure revealed that β-PPHT-f is non hemolytic. Also, the Leishman stained blood smears prepared from whole blood incubated with β-PPHT-f for 3, 4, 5 and 6â¯h at 37â¯Â°C revealed that the blood cells were not affected by β-PPHT-f, its surface morphology and elemental composition. H9c2 cell line studies on a transparent film prepared using β-PPHT-f revealed that the elemental composition of the nanocomposite favored H9c2 cell adhesion and differentiation. All the characterization results indicate that the newly developed scalable novel β-PPHT-f is hemocompatible and cardiomyocyte compatible, suggesting it as a useful material for direct blood contact and cardiac patch applications.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Biomedical Engineering
Authors
Ratnakar Arumugam, Raj Kumar Chinnadurai, Bala Nehru Subramaniam, Bhuvaneshwar Devaraj, Veni Subramanium, Srinadhu Endu Sekhar, Satyanarayana Nallani,