Article ID Journal Published Year Pages File Type
9953300 Operations Research Letters 2018 6 Pages PDF
Abstract
We consider an M/M/1+M queue with a human server, who is influenced by incentives. Specifically, the server chooses his service rate by maximizing his utility function. Our objective is to guarantee the existence of a unique maximum. The complication is that most sensible utility functions depend on the server utilization, a non-simple expression. We derive a property of the utilization that guarantees quasiconcavity of any utility function that multiplies the server's concave (including linear) “value” of his service rate by the server utilization.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,