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a b s t r a c t

Synchronized neuronal activity has been observed at all levels of human and any other
nervous systems and was suggested as particularly relevant in information processing
and coding. In the present paper we investigate the synchronization of bursting neuronal
activity. Motivated by the fact that in neural systems the interplay between the network
structure and the dynamics taking place on it is closely interrelated, we develop a
spatial network representation of neural architecture in which we can tune the network
organization between a scale-free network with dominating long-range connections and
a homogeneous network with mostly adjacent neurons connected. Our results reveal that
the most synchronized response is obtained for the intermediate regime where long- as
well as short-range connections constitute the neural architecture. Moreover, the optimal
response is additionally enhanced when the speed of signal propagation is optimized.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Neural dynamics is a cooperative process of neurons and the existence of the synchronous rhythms is crucial for
performing of the operational tasks in various specialized areas of the nervous system [1,2]. A particularly interesting type
of a complex oscillatory rhythm of neurons is bursting, where the neural activity alternates, on a slow time scale, between
a quiescent state and fast repetitive spiking [3]. Neural bursting has been identified in several processes and regions in
the mammal brain [4] such as the olfactory system or the hippocampal region [5]. Remarkably, variations of rhythmic
bursting activity are also believed to be involved in various clinical disorders and pathological conditions [6,7]. In order
to explore the bursting synchronization mechanisms in ensembles of coupled neurons mathematical models have been
utilized [8–10]. This is because the study of synchronization and desynchronization of neuronal bursting behaviours from
biophysical models may help us to understand further the information processing and coding as well as disorders in the
nervous system. Notably, in the last decade the focus of this interest has shifted to ensembles characterized with complex
interaction topologies, as constituted by small-world or scale-free networks [11–16]. Motives are definitely related with the
fact that such topological structures have been identified in the nervous system [17]. Moreover, Pontes et al. also took into
account the spatial distance between coupled bursting neurons [18]. In their model the interaction strength decreased as a
power law with increasing distance, thus enabling the emulation of the fractal nature of dendritic connections.

It is known that information flow in neural networks is not instantaneous. A finite signal transmission speed along
the axons results in a space dependent time delay. Typical speed of signal conduction is on the order of m/s, leading to
transmission times up to hundreds of milliseconds for information propagation through the cortical network [19]. Previous
studies have already revealed that time delays can gradually affect the spatiotemporal dynamics in networks of coupled
neurons [20]. Remarkably, Dhamala et al. [21] have shown that time-delayed coupling facilitates the existence of stable
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synchronized states of two chaotic neurons, whereas Burić et al. [22] extended the concept to a pair of noisy bursting
neurons. Furthermore, many interesting phenomena such as zigzag fronts of excitations and antiphase synchronization [23]
as well as multiple stochastic resonances [24] were found in neuronal networks with constant delays. Wang et al. [25]
investigated delay-induced synchronization transitions on neuronal network and their study has revealed that an enhanced
synchronized response is observed if the delay equals a multiple of the inherent oscillation frequency of neurons. Special
attention has also been devoted to different types of couplingmechanisms and transmission delays. Along these linesWang
et al. [26] studied synchronization transition of bursting neurons with respect to attractive and repulsive coupling, whereas
Hao et al. [27] focused on the difference between electrical and chemical coupling. In Ref. [28] burst synchronization via
delayed inhibitory synapses has been analysed. Nevertheless, the use of constant fixed delays provides a good approximation
for simple circuits consisting of a small number of cells. However, realistic neural networks are embedded in metric space
and hence the network topology and the transmission delays are also a function of the Euclidean distance between the
neurons. In view of that, several studies tackled synchronization of neural networks with distributed and time-varying
delays [29–32]. It has been shown that space-dependent delays can destabilize the synchronous states and induce the
formation of waves [33]. Later on, Ko et al. [34] and Ko and Ermentrout [35] widened the idea of distance-dependent delays
to complex interaction topologies by studying the synchronous behaviour andwave formation in sparsely coupled neuronal
oscillators.

In the present study we extend the scope of research of synchronization of bursting activity on complex networks with
the presence of signal transmission delays. For this purpose we develop a network representation of neural architecture,
where vertices are bursting neurons embedded in three-dimensional metric space and links model electrical coupling
between them. The employed network model allows us to smoothly alter the topology from a scale-free network with
dominating long-range connections to a network where principally only adjacent neurons are connected. In our previous
studies a similar network model has been used in order to determinate the topology leading to optimal stochastic and
coherence resonance responses in an ensemble of excitable neurons [36,37]. Here we widen this idea to identify the most
favourable interaction topology for the synchronization of bursting neurons. Additionally, we consider transmission delays,
which are a consequence of finite signal propagation speeds and they depend on the Euclidean distances between coupled
neurons. Therefore, when the topology is altered, the distribution and the rate of delays are simultaneously modified as
well. In contrast to previous studies on small-world and scale-free networks [11–16], the employed model thus enables the
identification of topological as well as dynamical conditions which ensure the most synchronized bursting activity, without
choosing any specific network configuration.

2. Mathematical model

To mimic the characteristic bursting dynamics of neurons, we make use of the iterated map proposed by Rulkov [8],
which captures succinctly the main features of more complex time-continuous neuronal models, but is numerically much
more efficient. The temporal evolution of the i-th neuron along with delayed coupling is defined as follows:

xi(t + 1) =
αi

1 + xi(t)2
+ yi(t) + D

N
j=1

εij[xj(t − τij) − xi(t)], (1)

yi(t + 1) = yi(t) − γ xi(t) − σ , (2)

where yi(t) and xi(t) are the slow and fast variable of the map, respectively, and are considered as dimensionless variables,
t is the discrete time index and α, γ and σ are systems parameters. By choosing γ = σ = 0.001 ≪ 1 we ensure that the
dynamics of xi(t) is much faster than that of yi(t). Furthermore, we consider values of αi above 4.0, where the Rulkov map
produces chaotic oscillations. In this case the slow variable yi(t) exhibits saw-tooth oscillations, whereas the fast variable
xi(t) emulates the spiking–bursting behaviour. When the slow variable reaches a local maximum the fast variable begins
its firing interval. After the slow variable reaches a local minimum the firing interval switches then into a quasi-steady
state. In order to take into account the diversity of neurons, values of αi are assumed to follow a power-law P(α) ∼ α−β

with a scaling exponent β = 2.5. Values of αi are then confined within the interval [4.1, 4.4], whereby the characteristic of
the distribution remains intact. This arrangement of αi implies a small number of highly active oscillators with small time
intervals between the bursts whereas the majority of neurons are less active. Namely, higher the values of αi correspond to
higher frequencies of bursting patterns. In this manner we presume the existence of a small fraction of leader (precursor)
neurons, which endeavour to trigger the response of its neighbours and thus act as global initiators of the bursts [38].

The sum in Eq. (1) stands for the coupling, where the coupling strength is symbolized by D and εij is the connectivity
matrix which has a value of 1 if the i-th and j-th neuron are electrically coupled and 0 otherwise. The calculation of the
network connectivity is based on the spatially embedded vertex fitness network model [39]. First, N neurons are randomly
distributed according to a uniform distribution inside a unit cube. Then, the i-th and the j-th neuron are connected if the
following condition is fulfilled:

αiαj

Iδij
> Θ, (3)
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Fig. 1. Characteristic network structures and the corresponding degree distributions for δ = 0.1 (a, d), δ = 1.7 (b, e) and δ = 5.0 (c, f). The number
of neurons is N = 100 and mean vertex degree is ⟨k⟩ = 5. The calculation of degree distributions is based on the average of ten independent network
generations.

whereΘ is a threshold that adjusts themean vertex degree ⟨k⟩, Iij is the Euclidean distance between the i-th and j-th neuron
and δ is a control parameter that enables smooth alterations of the topology of the interaction network (see also our previous
work [36,37]). The condition given in Eq. (3) entails that in general neurons with higher values of αi, i.e. leader neurons, are
more likely to be connected. The characteristic network configurations obtained for different values of δ along with the
corresponding degree distributions are shown in Fig. 1.

It can be observed that for δ = 0.1 (Fig. 1a) the network consist solely of long-range connections which originate mostly
from a few leader neurons. In this case the creation of connections is not affected by the Euclidean distance and hence
neurons with higher values of αi have the highest vertex degree. The corresponding degree distribution (Fig. 1d) follows
a power-law indicating a highly heterogeneous network structure. However, as δ is increased, the spatial distribution of
neurons becomes more and more important and consequently short-range interactions emerge. For δ = 1.7 (Fig. 1b) we
have thus a mixture of long- and short-range link, whereas for δ = 5 (Fig. 1c) only adjacent neurons are connected. It can
also be noticed that for higher values of δ the degree distributions becomemore homogeneous, so that for δ ≫ 1 the degree
distribution obeys a Poisson distribution (Fig. 1f), a typical feature of random geometric graphs.

The coupling term in Eq. (1) also involves a transmission delay τij, which is, as announced in the Introduction, a
consequence of finite speed of the action potential propagation. Accordingly, the transmission delay between the i-th and
the j-th neuron is defined as follows:

τij =
Iij
v

, (4)

where v is the signal propagation speed. Since the model describing the bursting dynamics is discrete in time, the delays
have to be converted into integer numbers. In particular, the value calculated in Eq. (4) is rounded down, i.e., only the integer
part of the calculated value is considered. In our model the neurons are uniformly randomly distributed in a unit cube and
hence the maximal possible distance between them is

√
3. Accordingly, v = 2 corresponds to instant communication with

no delays, whereas v smaller then
√
3 give rise to finite delays τij. It should be emphasized that the lengths of connections

Iij vary with δ and therefore the resulting delays are directly related to the topology of the network as well. To adjust the
range of delays, v is used as a control parameter, whereby the resulting delays are always between 0 and the integer part of
the fraction

√
3/v.

3. Results

We consider an ensemble of N = 200 neurons which form a network with a mean degree ⟨k⟩ = 5 and are weakly
coupled with a coupling strength D = 0.003. All presented results were averaged over at least 20 independent runs in order
to assure the appropriate statistical accuracy. Our main interest is to examine the coherent behaviour in the system as a
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Fig. 2. The level of phase synchronization quantified via r as a function of network structure δ and transmission speed v (a) and the cross sections of the
colour map at different values of v (b).

function of the network topology and the signal propagation speed. We focus mainly on the phase synchronization, which
is a quite weak condition of synchronization, since it gives only an inside on how synchronous is the switching between the
bursting and quasi-steady state phases of oscillators. For a given oscillator the phase increases for 2π at the beginning of
each burst, i.e. each maximum of the slow variable yi(t). Between two bursts the phase increases linearly with the discrete
time t . The phase ϕj(t) for the j-th neuron is described by the following equation [12–14]:

ϕj(t) = 2π

n +

t − tj(n − 1)
tj(n) − tj(n − 1)


, tj(n − 1) ≤ t < tj(n) (5)

where the n-th burst of the j-th oscillator begins at time tj(n). Note that the duration of individual burst tj(n) − tj(n − 1)
varies in an irregular fashion due to the chaotic dynamics. Furthermore, the neurons are heterogeneous and hence with the
given coupling strength exact equality of bursting times cannot be realized. However, coupling gives rise to amore collective
motion in terms of chaotic phase synchronization, where neurons try to harmonize their phases with each other, while the
amplitude and spiking behaviour are in general poorly correlated. To capture the order of phase synchronization, we have
to calculate the complex phase order parameter rt at a given time t:

rt =
1
N

N
j=1

eiϕj(t). (6)

The phase order parameter in a system of completely synchronized oscillators equals one, whereas in the case of totally
uncorrelated activity rt = 0. In order to describe the average global collective motion we calculate the time averaged order
parameter r:

r =
1
T

T
t=1

rt , (7)

where T = 105 is the total number of iterations used in the calculations after 2 · 104 initial iterations were discarded as
transients. In case of synchronization in a network of heterogeneous chaotic neurons, values of r are expected between 0
and 1, whereby higher values correspond to a greater extent of synchronization. Results showing r as a function of δ and
v are presented in Fig. 2. It can be observed that as long as v > 0.02 the optimal phase synchronization is achieved for
intermediate values of δ, at which the network is constituted by long- as well as by short-range connections. For lower
propagation speeds the most synchronized response is obtained at larger values of δ, where the lengths of connections are
lower. Furthermore, the best synchronization is at v ≈ 0.1, which shows that delayed coupling gives rise to the collective
behaviour in a network of heterogeneous neurons. Thus the plot in Fig. 2 shows that the collective dynamics of weakly
coupled chaotic neurons is strongly influenced by both the network configuration and the propagation speed of the signals.

To get some additional insights into the dynamical behaviour we examine the correlations between individual neurons
by calculating the correlation matrix R, whose ij-th element is defined as follows:

Rij =


[x̄i − xi(t)][x̄j − xj(t)]

sxisxj
(8)

where x̄i and x̄j are themean values of the fast variables during all iterations and sxi and sxj the standard deviations of the time
series xi(t) and xj(t), respectively. If Rij = 0 no correlation between the i-th and j-th oscillator exist, whilst Rij = 1 signifies
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Fig. 3. Correlation matrices Rij for different interaction topologies (columns) and different speeds of signal propagation (rows). If the correlation between
the i-th and j-th neuron is more than 0.1, point (i, j) is marked black, otherwise it is yellow. Note that the neurons are indexed in descending order of αi .

Fig. 4. Frequency of the i-th oscillator fi at v = 2 (instantaneous communication) for different network structures (a) and for different propagation speeds
at optimal network configuration, i.e. δ = 1.7 (b). Note that the frequencies have been normalized to the minimal frequency f0 = 0.00291.

completely synchronous motion. The correlation matrices for three characteristic network structures (δ = 0.1, δ = 1.7 and
δ = 5) and three different propagation speeds (v = 2.0, v = 0.1 and v = 0.01) are shown in Fig. 3. We can observe that in
case of scale-free interaction topology (δ = 0.1), a good correlation exists mainly between active neurons, which also have
a high node degree, whereas the less active neurons are weakly correlated. On the other hand, in the network where short-
range connections are dominative (δ = 5), only some clusters of correlated neuronal activity exist, whose positions do not
depend on the inherent dynamics of individual neurons. Notably, the biggest overall correlation is attained at intermediate
values of δ, which once again confirms that the best synchronization is achieved if both long- and short-range interactions
characterize the network. In this case themost active neurons function as ‘‘local’’ hubs that dictate the dynamics of the local
interconnected neighbourhood and also communicate among themselves (Fig. 1b). Moreover, the optimal speed of signal
transmission at v = 0.1 additionally improves the correlation among bursting neurons in comparison to v = 2.0, where no
transmission delays are incorporated in the coupling.

To further investigate the impact of network topology and transmission speed on synchronized bursting, we examine
the distribution of frequencies of individual neurons. The average bursting frequency of the i-th neuron fi is defined as the
total number of bursts ni divided by the time interval in which they occur ti:

fi =
ni

ti
. (9)

The system consists of a small number of very active oscillators with high intrinsic frequencies when they are uncoupled,
and a large number of low-frequency oscillators. When they are coupled, the effect of different network configurations and
different propagation speeds on the average frequency distribution are shown in Fig. 4. We use the standard deviation
(SD) as a measure for dispersion of the frequencies. The results in Fig. 4a reveal that the frequency distribution is the most
homogeneous for the optimal system constellation consisting of short- and long-range connections (δ = 1.7). In particular,
the SD’s expressed as a percentage of themean values for δ = 0.1, δ = 1.7 and δ = 5were 2.9%, 2.4% and 5.2%, respectively.
Clearly, for intermediate network topology the coupled neurons maximally adopt their frequencies and try to unify their
values. Moreover, in Fig. 4b we can observe that the optimal speed of signal transmission (v = 0.1) additionally unifies the
frequencies. The SD’s expressed as a percentage of the mean values for v = 2.0, v = 0.1 and v = 0.01 were 2.4%, 2.0% and
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3.0%, respectively. It can be observed that the frequencies of more active neurons are considerably reduced, which reflects
the fact that they have a higher node degree and hence have larger coupling fluxes. Remarkably, Yu et al. [14] who studied
synchronization behaviour of bursting neurons in small-world networks also revealed that coupled neurons unify their
bursting frequencies and that the more active neurons adopt the bursting frequencies of less active neurons. Furthermore,
we found that this additional frequency lowering of leader neurons, or increasing their periods, corresponds to the average
delay of the signal transduction. Of course, a threshold exist towhich the oscillatory periods can be extended by these delays;
when the threshold is exceeded, the oscillators cannot be delayed any further and the distribution of frequencies become
again more heterogeneous (see the case for v = 0.01).

4. Discussion

We have studied synchronization of weakly coupled bursting neurons. Our results show that a highest level of
synchronization is obtained when a proper ratio of long- and short-range connections exist in the network. Moreover, this
optimal response is additionally enhanced when the speed of signal propagation is optimized. It is worth mentioning that
the presented results are in agreement with our previous studies [36,37], where we studied the impact of the interaction
topology on the regularity of noise induced oscillations in an ensemble of excitable neurons. The most coherent responses
were also found in the intermediate regime between the scale-free network with dominating long-range connections
and the strong geometric regime, thus indicating that this is the most favourable neural architecture for various types of
dynamical behaviour. However, it should be noted that not in all dynamical regimes the intermediate network configuration
ensures best synchronizability. We argue that the mechanism is similar and strongly related to the flexibility properties
of the individual oscillators, which enables adopting of frequencies, as it has been discussed in Fig. 4 for the present case.
Sensitivity and flexibility of oscillators and their relation to the frequency adaptation have been extensively discussed in our
previous papers (for review see e.g. Ref. [40]). It has been shown that the oscillator’s flexibility is in principle independent
of its inherent dynamics, but in general oscillators are more adoptable in the proximity of bifurcation points (for example
in an excitable steady state). For the model system under consideration, the system is more flexible in the region of chaotic
bursting than in the region of periodic oscillations [41]. Therefore, reduction of the discrepancy of the frequencies leading to
the most synchronized response (see Fig. 4), which is attained at the intermediate network configuration, can be achieved
if the oscillators operate in the regime of chaotic bursting.

Our findings thus reveal that the both network structure as well as the speed of signal transmission are vital for assuring
optimal conditions for synchronization of bursting neurons. Remarkably, alterations of exactly these factors have been found
to be important and responsible for certain pathological conditions. Many neurodegenerative diseases such as multiple
sclerosis are related to the process of demyelination in which the myelin shells that cover the neuron fibres vanishes and
consequently the action potential propagation speed is significantly modified [42]. Moreover, a number of studies have
established that several neuronal pathologies are associated with changes in efficiency of the intercellular coupling and
neural network dysfunctions [7,43–45]. One kind of those dysfunctions is Parkinson’s disease, which leads to movement
disorders. Awell establishedmethod to treat patientswith Parkinson’s disease is deep brain stimulation [46]. This treatment
includes surgical implantation of electrodes in certain areas of the brain and connects themwith an external current source
of high frequency [47]. The synchronization/desynchronization of a neural network under external periodic forcing has
already been studied from a theoretical point of view [16,18]. The authors investigated the ability of an external periodic
signal to synchronize or desynchronize a neural network. They showed that the locking frequency interval width increases
with the amplitude of the external signal. Hence to achieve desynchronization, the external frequency must be chosen
outside the frequency looking interval. In the future it would beworth to investigate the impact of the joint effect of delayed
transmissions between neurons, topology and external forcing.

We hope that further theoretical and experimental studies about the topology and dynamics of cellular networks will be
conducted, and that the results will contribute to even better understanding of physiological and pathological conditions in
biological tissues with direct applications inmedicine. In particular, for diagnostic purposes it would be ofmuch importance
to detect and probably measure some relevant quantities in order to get indicators for (pathological) changes in the cellular
network structure and the dynamical properties of signal transduction, where the speed of signal propagation is probably
the most obvious element. Additional studies will be needed to understand the communicational links, the ways of cellular
coupling, not only in a way of direct adjacent connections, like gap-junctions for example, but also long-range connections
of cells at different locations in the tissue. This might have spectacular consequences in preventive diagnostic, like it has
been indicated for chronic hypoxia in a very early study in this direction [48].
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