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1. Introduction

The high dimensional data are widely used in various stochastic models. Such data arise naturally when a response

variable Y depends on a number of factors X, ..., X,. For instance, in medical and biological studies Y can describe the
state of the health of a patient, e.g., Y = 1or Y = —1 mean that a person is sick or healthy, respectively. The challenging
problem is to find in huge number of given factors the collection X, ..., X, of significant ones which are responsible for

certain complex disease provoking (see, e.g., [ 14]). Note also that in pharmacological studies the values —1 or 1 of a response
variable can describe efficient or nonefficient employment of some medicine (see, e.g., [19]). Thus solution of the problem
to identify the set of significant factors has important applications even for binary response variable.

Now we assume that Y takes values in a finite subset of R (with more than two elements in general) and X1, .. ., X, take
values in arbitrary finite set. This assumption is quite natural, e.g., for medical applications because we can consider the
health state of a patient in more detail. In Section 2 we will describe our general model.

There are many complementary approaches concerning the prediction of response variable and the identification of the
significant combinations of factors. Such analysis in medical and biological investigations is included in the special research
domain called the genome-wide association studies (GWAS). The progress in this domain is discussed in the recent paper [27].
Among powerful statistical tools applied in GWAS one can indicate the principal component analysis [11], logistic and logic
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regression [20,21,23], LASSO [12,25] and various methods of statistical learning [10]. Mention in passing that there are
new modifications of these methods. In the present paper we concentrate on the development of multifactor dimensionality
reduction (MDR) method. This method was introduced in the paper by M. Ritchie et al. [ 18] for binary response variable. It
goes back to the Michalski algorithm [13]. During the last decade more than 300 publications were devoted to this method.
We are also interested in the dimensionality reduction. However instead of consideration of contingency tables (to specify
zones of low and high risk) presented in [ 18] and many subsequent works we choose another way. Note that researchers use
different terminology for specified approaches leading to dimensionality reduction of factors. For instance in[7,15,16,22] the
authors propose the following methods: MDR-PDT (pedigree disequilibrium test), MDR-SP (structured populations), Gene-
based MDR and MDR-FS (feature selection), respectively. We could call our method MDR-EFE (error function estimation).
Contributions containing various improvements of the original MDR method are available also, e.g., in [6,9,17,19].

To predict Y we use some function f in factors Xy, . . ., X,,. The quality of such f is determined by means of error function
Err(f) involving a penalty function . This penalty function allows us to take into account the importance of different
values of Y. As the law of Y and X = (Xi, ..., X;) is unknown we cannot find Err(f). Thus statistical inference is based
on the estimates of error function. Developing [2-4] we propose (in more general setting) statistics constructed by means
of a prediction algorithm for response variable and K-fold cross-validation procedure. One of our main results gives the
criterion of strong consistency of the mentioned error function when the number of observations tends to infinity. The
strong consistency is essential because to identify the “significant collection” of factors we have to compare simultaneously
a number of statistics. We demonstrate that this criterion admits the efficient employment even when instead of the penalty
function one uses its strongly consistent estimates. In contrast to [2] the situation with the choice of the penalty function is
more complicated.

We demonstrate the stability of proposed statistics. Namely, the central limit theorem (CLT) is proven for error function
estimates in the framework of prediction algorithm, the penalty function and K-fold cross-validation for nonbinary response
variable (for binary response variable such CLT was established in [3]). Also we pay attention to specification of the optimal
forecast of Y and identification of the significant collection of factors.

The paper is organized as follows. Section 2 contains notation and auxiliary results. Here we discuss the problem of
optimal (in a sense) prediction of nonbinary response variable with values in a finite set Y C R by means of a collection
of factors taking values in arbitrary finite set. For this purpose we define the prediction error involving a penalty function.
In Section 3 we introduce prediction algorithm and for i.i.d. vectors of observations construct the estimator of unknown
prediction error. The main result here (Theorem 1) provides the criterion of almost sure convergence of these estimators
to prediction error. We also prove two corollaries containing conditions which are easy to handle. Section 4 is devoted to
applications. Namely, we consider two important examples of prediction algorithm and verify conditions of the mentioned
corollaries. Section 5 can be viewed as the foundation for dimensionality reduction of factors (see Theorem 2). In Section 6
we prove the central limit theorem (Theorem 3) for appropriately normalized and regularized estimators of error function.
We complete the paper by multidimensional version of the CLT and some remarks permitting to find approximate confident
intervals for unknown error function. The applications of developed method to simulated data are considered in [5].

2. Notation and auxiliary results

LetX = (Xy, ..., X,) be arandom vector with components X : 2 — {0, 1,...,s} wherek=1,...,nands,n € N, All
random variables are defined on a probability space (£2, #,P).SetX = {0, ...,s}",\ Y={-m,...,0,...,m},herem € N.
We assume thatY : 2 — Y, f : X — Y and a penalty function ¢ : Y — R.. The trivial case ¢ = 0 is excluded.

Remark 1. For instance in medicine one has the response variable which characterizes the state of the health of a patient

by means of predetermined scale reflecting the progress of the disease. If such values constitute the set {0, 1, ..., m} then
our model comprises this situation since Y can take the values {—m, ..., —1} with probability 0. Moreover, we can assume
that Y takes arbitrary rational values 0 < x; < --- < x,, where xy = sx/M (sy, € NNM € N,k = 1, ..., m). Then we use
the correspondence x; +— Sy, k = 1,...,m, and consider Y = {—sp,...,0,...,sn}. We employ the strongly consistent

estimates of a penalty function (involving data) and if we know that P(Y = y) = 0 for some y € Y then we can take
Y (y) = 0and ¥y (y) = 0 for such y (N € N) and our results will hold true as we will see further on. Note also that we can
specify the importance of deviation of f (X) from Y involving the penalty function .

Fory € Y, consider the setA,={x € X : f(x) =y} and put M = {x € X : P(X =x) > 0}. Introduce the error function
Err(f) == EIY = fQOI¥(Y).
It is easily seen that one can write Err(f) as follows
Er(f)= Y ly—zlyMPY =y.fX)=2)=) Y w' (0q@). (1)
y.zeY z€Y xeAz

Here q(z) is the zth column of (2m + 1) x (2m + 1) matrix Q with entries q,, = |y — z|, ¥,z € Y (the entry q_p _p, is
located at the left upper corner of Q),

wx) =W (EmPY=-mX=x),...,vy(mP(Y=mX= )T
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and T stands for transposition. All vectors are considered as column-vectors. Further ff A means the cardinality of a finite
set A.

Let us describe f : X — Y which is a solution of the problem Err(f) — inf. In other words we search for a partition Ay,
y €Y, of a set X such that a function

f=Y yliA} (2)
yey

has the minimal Err (f). We call any solution f of this problem an optimal function.
For each nonempty setJ such that] C Y (“C” is used as “C") put

B={xeX:w ®qy) =w'®q@).y.z€);w 0qy) <w' 0q),y ], veY\J}. 3)
If] = Y then By = {xeX: w'(x)q(y) =w'(x)q(2), y,z€Y}. Note that B, N B; = @ if] # I (I,] C Y). Moreover,
U]Cy,]?gg B] =X. (4)

We write B, for By when ] = {y},y € Y. Let I{A} be an indicator of a set A. As usual I{@} = 0.

In view of (1) one can claim that B, C A, foreachy € Y.If Uycy By, # X then, for any x € X\ U,cy By, there exists ] = J(x)
such thatx € By where] C Y and ffJ > 1. Then one can include x in any A, with y belonging to J (i.e. enlarge one of the sets
By, y € ], by means of element x). In such a way we obtain that A, = B, U C, where C;, y € Y, form a partition of the set
X'\ Uyey By. Obviously the proposed construction leads to f with minimal Err (f). Other choice of Aj, y € Y, would lead to f
with greater Err(f) than one for a function proposed above. Thus we come to elementary

Lemma 1. Any function f : X — Y providing the solution to the problem Err (f) — inf has the form (2) withA,,y € Y, specified
above.

Remark 2. Clearly, we can specify the unique way to construct the sets C,, y € Y. For example, if X \ Uyey B, # @ then,
for each x € X\ Uyey By, we find the unique B; such thatx € B; (] = J(x),] C Y, 8] > 1).If] = {y1,...,y,} where
Y1 < .-+ <y, we include x in Cy,. Note also that we can consider the optimal f with A;j =A,NMfory € Y\ {—m} and
A, =A_n UX\M).

Our next aim is to provide the convenient form for an optimal function f and rewrite Err(f) in appropriate manner. For
this purpose we represent B, in the following way

w' (Xg(—=m) < w' ®q(—m+ 1), y=-m,
xeBy = {w' ®qy) <w'X)q@), z=y+1, y#=Em, (5)
w®gm—1) > w' (®q(m), y=m.

Note that B, can be an empty set. To show that (5) is true we define, fory € Y,y > —m, the vector A(y) :=q(y) —q(y — 1).
Clearly,
A =(1,...,1,—1,..., 1", (6)
——— ——
m+y m—y+1

Inequality w T (x)q(y) < w' (x)q(y + 1) is equivalent to the following one w T (x) A(y + 1) > 0. For all x € X the vector w(x)
has nonnegative components

wy(x) =y PY =y,X=%), yeY. (7)
Therefore inequality w T (x) A(y + 1) > 0 and (6) yields w (x)A(z) > 0ifz > y+ 1(z € Y).Forz > y+ 1(z € Y), one has

z

w' ()@@ —ay) = Y wA®K. (8)

k=y+1

Consequently, w " (x)(q(z) —q(y)) > 0.In a similar way one can see that inequality w ' (x)q(y) < w' (x)q(y — 1) implies, for
t <yt eY,relationw (x)q(y) < w' (x)q(t). Thus(5)is established. Employing (8) we observe that the set] = {y1, ..., ¥;}
appearing in Remark 2 has the form {y;,y1 +1,...,y1 +r — 1}

For x € X, consider the vector L(x) having the following 2m components

L) =w (AY) =w_m® + -+ wy_1(X) — wy(X) — -+ — W (), (9)
herey € Y,y > —m. Then, due to (5) one has, for eachy € Y,

Lopy1(x) > 0, y=-m,
x€By < 1L11(x) >0, Ly(x) <0, y#=Em, (10)
Ln,(x) <O, y=m.

Further we will use the property of the vector-function L(x), x € X, containing in the following statement.
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Lemma 2. Let L;(x) = Oand L,(x) = O forsomex € X, t,z € Y, -m < t < z. ThenL,(x) = 0 foranyy € Y such that
t<y=<z

Proof. For each x € X the vector w(x) has nonnegative components. Formula (9) shows that for any x € X the function
L,(x) is nondecreasing functioniny (y € Y, y > —m). This observation leads to the desired statement. O

Using Remark 2 it is convenient to make the following choice of the optimal function f,,;. Namely, according to (10) we
can write

L—m+1 (X) = Ov y=—-m,
fopt @) =y <= {L1(x) =0, L,(x) <0, y#+m, (11)
Ln(x) <O, y=m.

In fact, according to Remark 1 we have A,, = B, and therefore we write in (11) the strict inequality L, (x) < O wheny = m.
Now consider random vectors ¢ and x with the respective components

o=vWLHY =y}, x=LUX€eA} yeY.

Then we can rewrite (1) as
Err(f) = EgoT Qx.

Note that Q can be represented as the sum of 2m symmetric matrices with 0 and 1 entries.

o1 1 ... 1 11 0O 01 ... 1 11 0 0 O 0 0 1
1 0 1 ... 1 1 1 0O 00 ... 1 11 0 0 O 0 0 O
110 ... 1 11 1 00 ... 1 1 1 0 0 O 0 0 O
Q=|: + & .o + : 3 B I
111 ... 01 1 1 1 1 0 0 1 0 0 O 0 0 O
11 1 ... 1 1 1 1 1 0 0 O 0 0 O 0 0 O
111 ... 1 10 1 1 1 1 0 O 1 00 0 0 O
In other words,
2m—1 )
Q=) Q" (12)
i=0

where the matrix Q® = (qﬁ)z)y,zey has entries qy)z =0if|ly—z| <iand qj(,l)z = 1otherwise. Formula (12) permits to rewrite

Err(f) as follows

2m—1
Er(f)=)_ D, VOPY=yIf)—yl > (13)

i=0 i—m<|y|<m

Here we take into account that in representation of Q as the sum of matrices some of these matrices have rows containing
only zero entries. Thus we obtain formula (13) which is the key formula for Err (f) further analysis.

3. Criterion of prediction error estimates strong consistency

The law of (X, Y) is unknown, therefore, fora givenf : X — Y, we cannot calculate Err (f). Thus it is natural that statistical
inference concerning the quality of prediction of the response variable Y by means of f (X) is based on the estimates of Err (f).

Let £1, &2, ... be a sequence of independent identically distributed (i.i.d.) random vectors (X', Y'), (X2, Y?), ... having
the same law as (X, Y).For N € N, set&y = (£, ..., £N). We will use approximation of Err(f) by means of &y (asN — o0)
and a prediction algorithm (PA). This PA employs a function fps = fpa(x, &y) defined for x € X and &y and taking values in Y.
More exactly, we operate with a family of functions fpa(x, v,) (with values in Y) defined for x € X and v, € (X x Y)” where
p € N,p < N.To simplify the notation we write fpa (X, v,) instead off;;\(x, vp).ForS C {1,..., N} wesetéy(S) = (&,jes)
andS :={1,...,N}\ S.ForK € N (K > 1), introduce a partition of a set {1, ..., N} into the subsets

Sk(N) = {(k— DIN/K1+ 1, ..., kIN/KII{k < K} + NI{k = K}}, k=1,...,K,

here [a] is the integer part of a number a € R. Following [2] we can construct an estimate of Err (f) involving &y as well as
prediction algorithm defined by fp4 and K-cross-validation (on cross-validation we refer, e.g., to [1]). Namely, set

—~ = 1@ V. ESN)LAN Y. i, k.
B =3 Y 13y TGO.Lk) ”

i=0 i—m<|y|<m k=1 jeSk(N)
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Here Ay(y. i, k,j) = (Y =y, lfsa (X', Ev(Sc(N))) —y| > i} and, for each k € {1,....K}, let ¥ (y, & (Sk(N))) be strongly
consistent estimates of ¥/ (y) (as N — oo)forally € VY, i.e.

V@, &n(SiN)) > ¥ () as, yeY, N— oo. (15)
We want to guarantee that convergence (in a certain sense) of fp4 (-, £y) to f(-) as N — oo implies the relation
Erri(foa, £x) — Err(f) as., N — oo. (16)

In what follows the sum over empty set is equal to zero as usual.

Theorem 1. Let £', £2, ... be a sequence of i.i.d. random vectors with the same law as (X, Y), ¥ be a penaity function,f : X — Y
and fps define the prediction algorithm. Assume that there exists nonempty set U C X such that for each x € U and every
k=1,...,Konehas

fea(x,6n(Sk(N))) — f(x) as., N — oo. (17)
Then (16) holds if and only if

K
Y>> w®QSN,x k) >0 as, N— oo, (18)
k=1 xexX\U

where, for x € X, N e Nandk = 1, ..., K, the vector §(N, x, k) has components

8y(N, x, k) = I{fpax, En(Sk(N))) =y} — I{f () =y}, y €Y.

Proof. Let us show that asymptotic behavior of I:{r\r,( (fpa, En) as N — oo will be the same if one replaces &(y, En(Sk(N)))
by ¥ (y) in (14). In other words relation (16) is equivalent to the following one

Z"f y ! i S POUY =y KOO M= )
i=0 i—m<]y|<m K k=1 jeSk(N) ﬁsk(N)

as N — oo.Indeed, (15) holds and, foranyw € £2,i=0,...,2m—landk =1, ..., K, one has

Y = y. [fon 0. £y Se(N))) — -
1Sk (N) JE§V) {Y =y, fpaX', EnSk(N))) —y| > i} <

For each y and i, due to the strong law of large numbers for arrays (SLLNA) (see, e.g., [24])

Z Y =y, IfX) —y|>i} > P(Y =y, [fX) —y| > i) as., N> oo.

25k (N) ;5
Consequently, forany k =1, ..., K we get
2m—1 j j .
Y =y, [f(X)) — i
Yy YRR VDAY L gy as, N oo (20)
i=0 i—m<ly|<mjeSk(N) 15k (N)
Forye Y NeNk=1,...,Kandi=0,...,2m — 1, introduce the random variables
(@) _ i ) yi
W= Y = y}Fy (X, y)
W)= 5w E%) e
where
e, y) = T{lfoa(x, & ScN)) — yI > i} = T{IF () — y| > i} (21)
In view of (20) relation (19) is equivalent to the following one
K 2m—1 '
20 Y YOQL® 0 as, N> (22
k=1 i=0 i—m<|y|<m

We can write Q,\(,i’k(y) = ('-,),;U(y) + Q,S,),;X\” (¥), i=0,...,2m — 1, where

- 1 . 4 -
%) = S0 X e V(Y = yiEO, (0L y), v C X,
A jesean
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In view of (17) we can examine (i’),;U(y).Fory eY,NeNk=1,...,Kandi=0,...,2m— 1, we come to the inequalities
QW = D [Hfoax, ExScN)) =yl > i} — I{IF o) — y| > i}].
xeU
Functions f and fp4 take values in Y. Thus (17) yields that for eachx € U, k = 1,...,K and almost every w € $2 one
can find an integer N;(x, k, ) such that fps(x, Ey(Sk(N))) = f(x) if N > Ni(x, k, w). Therefore, @, U(y) = 0 for any
i=0,...,2m—1,ye Y, k=1,...,Kand almosteveryw € £2 whenN > N;(w) = maxyey k=1....x N1 (x k, w). Obviously,

,,,,,

N; < o0 a.s. because U < o0. Thus we have shown that

K 2m-—1

ZZ Z V(@) (I>U(y)—>0 as., N — oo. (23)

k=1 i=0 i—m<|y|<m
Now we turn to analysis of Q,\(,') X\U(y) If U = X then Q,f,’) X\U (y) = Oforalli, N, k and y under consideration. In this case
(23) is equivalent to (22). Thus for U = X the claim of theorem is verified. Let now U # X. Set

K 2m-—1

wE\D =Y > > vmai .

k=1 i=0 i—m<|y|<m
Obviously,

2m—1

(X \U) = Z YT YW Y X = XY = yIE (. ). (24)

k=1 xex\U i=0 i—m<l|y|<m A5k (N) JjeSk(N)

Due to SLLNA, foreachx e X,y e Yandk =1, ..., K,

X = X1yl = PX =X Y = s, N ) 25
nskav)je;:m{ MY =y} > PX=x,Y =y) as, N— 00 (25)

Thus (24) and (25) demonstrate that limy_, o, Ty (X \ U) = 0 a.s. if and only if

2m—1
vN(X\U)—ZZ > > w®E Xy —>0 as., N oo (26)
k=1 xeX\U i=0 i—m<|y|<m
Taking into account that I{U;¢; D} = Zj.:l I{D;} for pairwise disjoint sets Dy, ..., D;, we can write
2m—1

w(X\U) = Z DX D w®s(N.xk

k=1xexX\U i=0 i—m<|y|<m |r—y|>i

K 1(y)
=Y 33 w@d 0 > s(N.xk) (27)

k=1 xeX\U yeY i=0 |r—y|>i
where I(y) = m — 1+ |y| fory € Y. Note that
1(y)

DD &N x k) = Z > 8IN.x k) = Z ly — r18,(N, x, k) = (Q8(N, x, k), (28)

i=0 |r—y|>i r=—mi<|r—y| r=—m

as|r—yl—1<I(y)forallr,y € Y.Here (Q5(N, x, k)),,y € Y, are coordinates of the vector Q§(N, x, k). Therefore (27)
and (28) yield that condition (26) is equivalent to (18). The proof is complete. O

Remark 3. Theorem 1 provides the criterion what one has to assume outside the “good set” U where (17) holds to guarantee
the desired relation (16). Further we will see that it is possible to verify conditions (17) and (18) efficiently. Note also that
the statement of Theorem 1 will be true if instead of £', ..., £ we consider independent random vectors gV, ..., gN-N
such that eV .= (XD, yW™ND) has the same lawas (X, Y),j=1,...,N,N e N.

Remark 4. In Theorem 1 we did not suppose that nonempty set U consists of all x € X satisfying (17). However, if relation
(17) holds for some u € X \ U then fpa(u, £y (Sk(N))) = f(u) as.fork = 1, ..., K when N is large enough (i.e. N > N;(w)).
Therefore relation (26) is equivalent to the analogous one where summation over x € X \ U is replaced by summation
over x € X \ (U U {u}). Therefore we obtain an equivalent formulation of Theorem 1 if U consists of all x € X satisfying
(17). Moreover, if there is no nonempty U C X such that (17) holds then relation (16) is equivalent to (18) with U = &.
Consequently, in Theorem 1 we need not assume that the set U is nonempty.
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Remark 5. Let (16) be satisfied and assume that, for some constant Cy,

V@, EnGSN)) <G as.forNeN, k=1,....K, yeY. (29)

Then E’FrK(pr, &v) <2m(2m+ 1)Cy, N € N. Thus the Lebesgue theorem on dominated convergence implies that
Erri (fpa, €n) is asymptotically unbiased estimate of Err (f).

ForN e NNxe X, ke {1,...,K}andt €Y, introduce the random vector I(N, x, k, t) with components
_H{fPA(Xv é:N(Sk(N))) <y}7 —m<y =< ta
I,(N,x, k, t) = { (30)
Y I{fpa(x, En(Sk(N))) > ¥}, t<y=sm

Ift = —mthen{—-m <y <t} = @and [,(N, x, k, =m) = I{fpa(x, En(Sk(N))) > y},ift = mthen{t <y < m} = @ and
L(N, x, k, m) = —T{fpa(x, En(Sk(N))) <y — 1}, herey > —m,y € Y.

Corollary 1. Condition (18) of Theorem 1 is equivalent to the requirement

K

Y3 ) TWIN,x k) > 0 as, N— oo, (31)

k=1 teY xexX(t,U)

where LT (%) == (L_pr1(X), ..., Ln(X)), Lyx), y=—m+1,...,m,aredefined in (9) and X(t,U) = X\U)N{xe M :
fx) =t}

Proof. It is easily seen that condition (18) can be written in the following manner

K

Y3 ) w®QN.x k) -0 as, N— oo. (32)

k=1 teY xeX(t,U)

Note that, for x € X(t, U),
w' (®) QSN x, k) =w' X Y Hfm& & (S(N))) =y} (qy) — q(t))

yeY
because ZYGY I{fpa(x, En(Sk(N))) = y} = 1 and Q is symmetric matrix. For y, t € Y, according to (8) and (9) we get
. Ly ) = — LX), y<t,
w' (X)) —q(t) =10, y=t,
L1 +---+Lx), y>t.

Ift = mthen Zt+l§r§y L.(x) =0andift = —mthen ) L, (x) = 0 as the sums over empty set. Changing the order

. y+1<r<t
of summation we obtain

t t r—1
D0 W AN =) = D Y M, Ev(ScN)) = yIL ()

y<t r=y+1 r=—m+1y=-—m
t
= Y & &GN <1 — 1L X). (33)
r=—m+1

In a similar way one has

y - m -
Y0 W& &SN = yILx) = Y Ifoa(x, Ex(Sc(N))) = 1L (). (34)
y>t r=t+1 r=t+1
Thus (33) and (34) entail
w'(X)Q 8N, x, k) =LT(I(N, x, k, t). (35)

Combining relations (32) and (35) we come to (31). The proof is complete. [

Corollary 2. Let v be a penalty function, f : X — Y and the prediction algorithm be defined by a function (family) fpa. Suppose
that for some set U C X condition (17) is satisfied. Assume that for each t € Y and any x € X(t, U) there exist i = i(x),j = j(x)
belonging to Y, i < j, such that

i< foax, ENSk(N))) <j as.fork=1,...,K (36)
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when N is large enough. Then the condition
Lininge.ij+1(X) = - -+ = Lnax(ejy(x) = 0 (37)
implies that (31) holds.

Proof. Obviously, for each x € X(t, U), we have

min{t,i} m
LTQIN, x, k)= Y LIOLN,x kO + Y LT GOLN,x kD). (38)
y=—m+1 y=max{t.j}+1

In view of (30) every summand in the right-hand side of (38) will vanish a.s. for all N large enough by virtue of (36). Taking
into account that X < oo we obtain the desired statement. O

4. Applications

Example 1. Let ¢ be a penalty function and f = f,,; where fo,; is defined in (11). Forx € X and aset Wy C {1,...,N}
introduce the random vector "N (x, w) with components
B, ) = L Yy =y X =x, yev, (39)
Y Wy S

here 0/0 := O (if Wy is empty). Put

Jea(x, (W, ) =Y yI{x € A () (40)

yey
where &y (Wy, ©) = {§i(w), € 2,1 € Wy},

" (x w) 20, y=-m,

XGZ;VN(“’) — ml(&w)ZO, Z}A/N(X,w) <0, y#+m, (41)

MN(X,(U)<O, y=m,
and

L (x, ) = (@™ (x, @) T A®). (42)

We write w in (39)-(42) to emphasize the randomness of variables under consideration. Clearly we can define pr (x, vp) for
x € X, vp € (X x Y)? and then obtain fpa (x, &y (Wy)) appearing in (40) by setting vsw, = &v(Wy).
Let us show that f and fp4 satisfy conditions of Corollary 2 if we take
U={xeX:LKx #0forally=-m+1,...,m}. (43)
One can claim that not only (17) is true but
foa®, En(Wi)) = f() a5, N — oo,

for any Wy C {1, ..., N} such that {Wy — oo (N — 00). Indeed, according to SLLNA, forany x € X,y € Y,y > —m, and
such sets Wy, one has

f},’VN (x, 0) = L,(x) as,N — oo. (44)

Letx € U then, foreachy > —m,y € Y, we can claimthatL,(x) < OorLy,(x) > 0.Hence for almost every w € 2 there exists
Ny = N, (w) such that eitherzy” x,w) <0 orzy” (x, ) > 0when N > Ny(w). Thus (41) yields that condition (17) is true
for U defined by (43). Take now x € X \ U. Then L,(x) = 0 for some v € Y, v > —m. In this case according to Remark 2 we
find in Y the subset ] = J(x) with J(x) > 1such thatx € B; (see (3)). Then v € J(x). In view of (11) we see thatx € X(t, U)
where t = min{y : y € J(x)}. Forany k € {1, ..., K} and all N large enough one has

Foa(x, EnScN))) € (%) ass.

Indeed, according to Lemma 2 we can state that L,(x) # Ofory € (Y \ J(x)) U {t},y > —m, and thus the relation
fralx, En(Sk(N))) € Y \ J(x), forany k € {1,...,K} and all N large enough, is impossible due to (41) and (44). Here we
bear on the observation that L,(x) < Oforz < tand L,(x) > 0 forz > max{y : y € J(x)}. Consequently we can apply
Corollary 2 withi = t and j = max{y : y € J(x)} because by Lemma 2 this choice guarantees the validity of (37). O
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Example 2. Now we will stipulate that the penalty function v is unknown. Assume that, for a sequence of sets (Wy)nen
such that Wy C {1,...,N}and f Wy — ocoas N — oo, there exists a sequence of random variables (¢ (¥, &y (Wn)))nen
satisfying for every y € Y the relation

Yy, Ev(WN) = ¥ () as, N — . (45)

Forx € Xand N € N, introduce the random vectors W~ (x, w) and T (x, w) with the components

Uy, En(Wy))

W (x, ) = W, ,-;W; Y =y, X =x}, (46)
D (x, 0) = @ (x, 0) AY), yevY, (47)

respectively. Now define ZyWN (w) by way of (41) where instead of f‘y/v” (x, @) one usesf}”” x w),yeY,xeX we 2and
N € N. Set

Jea(x. En(Wi)) = Y yIix € A (). (48)

yey

Similarly to Example 1 we can show that f = f,,; where f,, is defined in (11) and ﬁ»A given by (48) satisfies conditions of
Corollary 2 with U introduced in (43).

In [26] the following choice of a penalty function i was proposed when a binary response variable Y takes values —1
and 1

Y@ =cPY =y)"', yeY, c=const>0. (49)

Assuming here that P(Y = y) > O fory € Y one can take ¢ = 1 in (49) without loss of generality. In [2] it was explained
that this choice is natural. For general case Y = {—m, ..., m} (m € N) we also consider the penalty function given by (49)
(withc =1andP(Y =y) > Oforanyy € Y).Fory € Yand N € N, set Ay, (y) = {Y/ # y forall j € Wy},

Py (Y =y) = —— Yl =y,
Pwy (Y =) Wy 2 I{ v}
~ 1 — {Aw, W)}
) W = =< 50
Yy, En(Wy)) P (Y =) (50)

where 0/0 := 0, as usual. Then (45) holds since I{Aw, (y)} — 0O as., for eachy € Y, when N — oo. Therefore, by virtue of
(45) we see that, fork = 1, ..., K, relation (15) holds. O

Remark 6. Recall that in medical applications the response function Y often describes the health state of a patient. Namely,
for binary variable the values 1 and —1 mean “sick” and “healthy” (“control”), respectively. If Y takes values in the set
{—1, 0, 1} thenvalues 1and —1 have the same meaning and the value 0 describes the “intermediate state”, that is one cannot
decide whether disease (will) appears or not. Thus for this important case of ternary response variable Corollary 1 provides
the criterion of (18) validity involving asymptotic behavior of fp4 and properties of functions Ly(x), L1 (x) forx € X\ U.

Now we discuss the problem of a penalty function v choice. It was mentioned above that (49) is appropriate for binary
response variable Y with values —1 and 1. Namely, in [2] it was shown that if we assume that fp4 does not capture the
dependence of Y on X outside the “good” set U (i.e. such set that (17) holds) then the independence of events {Y = 1}
and {X = x} for x € X\ U naturally leads (see Corollary 1 in [2]) to formula (49). However for Y taking values in the set
Y = {—m, ..., m} withm € N the situation is more complicated. If we want (in a similar way to the case of binary Y) to
have L,(x) =O0foranyy € Y,y > —m, and x € X \ U then we see that it is equivalent to relations

Y@PY =y,X=x)=0, —m<y<m, (51)
Y(—m)P(Y = —m, X =x) = y(m)P(Y =m, X = x). (52)

Thus if we assume that events {Y = y} and {X = x} are independent fory € Y and x € X\ U then (52) is satisfied when
(49) holds for y € {—m, m} whereas (51) means ¥ (y)P(Y =y) = 0if P(X € X\ U) > 0. Therefore (51) is valid if Y (y) =0
when P(Y = y) # 0. Thus in this way for general Y one cannot justify the choice of v (y) provided by (49).If Y = {—1, 0, 1}
then the choice of ¥ (y) according to (49) fory € {—1, 1} and ¢ (0) = 0 can be viewed as possible when one can say that we
lose nothing in the “intermediate” case corresponding to Y = 0. Note that the choice of v by (49) is attractive if we want
to take into account the rare values of Y. We also emphasize that in Corollary 2 we did not suppose that L,(x) = 0 for any
yeY,y>—m,andx € X\ U.
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5. Dimensionality reduction

For many models it is natural to assume that response variable Y depends only on some factors Xj,, ..., Xy, where
1<ky <--- <k <n.Inother words, foranyx = (x1,...,%;,) € Mandy € Y,
PY =yIXi = X1, ..., Xp = %) = P(Y = ¥IXiy =iy, -5 Xip = Xi)- (53)
In the framework of medical applications it means that the factors Xy, ..., Xi, can be viewed as essential for provoking
complex disease whereas the impact of others can be neglected. Any collection of such indexes {kq, ..., k;} is called
significant. Clearly, if {k, ..., k;} is a significant collection and if {kq,...,k} C {mq,...,mp} C {1,...,n} then
{my, ..., mp} is significant as well.
Forr =1,...,n,setX, = {0,1...,s}". Thus X = X,. Further we write &« = (k1,..., k), Xy = X¢;, ..., X, ) and
Xg = (Xky, ..., X)) wherex; € {0, ...,s},i=1,...,n.Forx € Mandy € Y, formula (53) can be written as follows
PEY =yIX =%) =P(Y =y|Xoy = Xq). (54)
Here P(X = x,) > P(X =x) > 0asx € M.Forx € Xandy € Y, let us define the vector w* (x) with the components
arpy _ JYOPY =y, Xy =), XEM,

Note that(7) and (9) imply that, foreachy € Y,y > —m, one has L,(x) = 0ifx ¢ M. Introduce the functions Ly (x) according
to (9) where instead of w(x) we use w*(x). In other words, for x € X,
L200) = W) TAY) = w0 + -+ W () — wl(0) — - - — Wl ()
wherey € Y,y > —m. Then (54) yields that, foranyx € M andy = —m + 1, ..., m, one has
L) = ') TAWPX =2 /PKe = Xo).
Consequently, L, (x) and Lj (x) for x € X and y € Y take positive or negative values or vanish simultaneously.
If (54) is valid then according to (11) the optimal function f,,; coincides with

fUe) =) ylix e A%) (56)
yey
where
L(im_'.](x) 2 Oa y=-—-m,
X €A &= 11,0 =0,  Lj(x) <0, yz#+m, (57)
L (x) <0, y=m.
for every x € X. Actually, f*(x) depends on x,, only.

Now take any 8 = (my, ..., m;) where1 < my; < --- < m, < nand apply (55)-(57) with g instead of o (we do not
assume that collection {m, ..., m,} is significant). Thus we obtain the function f# (x). Note that Af ,y €Y, form a partition
of X (see (57) with o replaced by 8) and we conclude that £ (x) is defined correctly for x € X. Moreover, if the collection
of indexes « is significant then optimality of f* implies that for any 8 = (m;,...,m;) with1 < m; < --- < m, < nthe
following inequality is true

Err(f*) < Err(f#). (58)
Let v be a penalty function. Forany 8 = (mq, ..., m;) where1 <m; < --- <m, <n,x € XandasetWy C {1,...,N},
introduce the random vector @w#""N (x, w) with the components
~ V() - j
BN (x, ) = A DY =y, X, =xs}, yeV. (59)
JEWN

Let the prediction algorithm be defined by the function fp’i such that

o Wy, ) = > ylix € A8 (@) (60)
yeyY
where
P (x, ) > 0, y=-m,
XeAIN (@) = Tk w) 20, TP (x,0) <0, y#+m, (61)
L5 (x, w) <0, y=nm,
and
W (x, ) == (@7 (x, @) T A). (62)

We write w in (59)-(62) to emphasize the randomness of variables under consideration.
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Lemma 3. Let f = f? be defined by (56) (with B instead of ). Then forany 8 = (my, ..., m;),1<my < --- <m, < n, and
fra = f,f;, relation (16) holds when sets Wy C {1, ..., N} are such that § Wy — oo as N — oo. If, moreover, condition (29) is
satisfied then Err (fpa, £n) is an asymptotically unbiased estimate of Err(f) asN — oc.

Proof. Foru € X, and v, € (X x Y)P, introduce the functions

fr@) =0,  fuu, vp) = fralx, vp)
where u = xg. Note that, for eachx € X, w? (x) depends only on xg. Therefore f* and f; are defined correctly as f (x) = f(d)
and fra(x, vp) = fpa(d, vp) forany v, € (X x Y)? (1 < p < N) and x, d € X such that xg = dg. Take

U={xeX:Lf(x) #0forallyeY, y> —mj. (63)

Forx,d € Xandy € Y, one has Lf x) = Lf (d) if xg = dg. Introduce U* = {xg : x € U}. Thus we can apply reasoning as in
Example 1 and Corollary 2 for f* and f3, defined on X, with X3, U*, X, (t, U*) instead of X, U and X(t, U), respectively. To
get the second statement of this lemma we use Remark 5. The proof is complete. O

Now in a similar way to (46) we define

_ V0 5 W)

B WN .
w X, ) :
N (X @) Wy

Z Y =y, ng =xg}, yevy. (64)
JEWN

Set,forxe X,y € Y,y > —m,and N €N,

L (@) = @5 (x, 0) T AW). (65)
Introduce
T enWy)) = > yIix € AW () (66)
yey

where fo’” (w) is defined by (61) with replacement offﬁ‘w” (x, w) byff’w” x, w).

Remark 7. It is easily seen that the assertion of Lemma 3 is valid if we choose fps = f,i instead of fpy = E,’f\

Theorem 2. Let « = (kq, ..., k;) where a significant collection {kq, ..., k.} C {1,...,n}. Then, for any ¢ > 0 and each
B =(my,...,m)with{mq,...,m} C {1,...,n}, the following inequality holds
I:fr\rx(f,fj\,éw) EEr\rK(Efq,éN)'l‘é? as. (67)

forall N large enough.

Proof. In view of Remark 7 this statement follows from Lemma 3 and relation (58). O

Remark 8. Theorem 2 suggests that it is reasonable to select for further analysis each collection {kq, ..., k;} C {1,...,n}
as significant if Errg (fp,, én) with @ = (kq, ..., k;) has minimal value (or near the minimal value) among all ErrK(fPi, En)
where § = (my,...,m;)and {mq,...,m:} C {1,...,n}.Itis essential that we established relation (67) almost surely as

we have to compare E\rr,((ﬁi, &y) for various 8 = (my, ..., m,) simultaneously. Usually one considers models with large
number of explanatory variables where the collection of significant factors is rather small. To estimate the predictive power
of algorithm one uses the permutation tests, see, e.g., [8], possibly along with simulation. The measure of importance of
subsets of factors is treated, e.g., in [22].

It is desirable to estimate the difference between l:{r\r,( (ﬁi, &yv) and Err(f#) as N — oo. This problem is considered in the
next section for regularized versions of estimates.

6. Central limit theorem

Let 8 = (mq,...,m;) where 1 < my < --- < m, < n. We define the functions which can be viewed as the regularized
versions of the estimatesﬁi of f# (see (66) and (56)). Namely, for ¢ = (ey)nen With non-random positive sy — 0asN — oo,
put

Tt 510 = Ty te < o
yey

where
Wy C{1,...,N}, Wy — 00, N - 00, (68)
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and
TP (x, ) + ey > 0, y=-—
Xe Af,’sWN () <= AfHN(X w)+éey >0, /L\f’w"’ (x,w) +ey <0, y#=£m,
PN (x, ) + ey <0, y=m.

Here Ly‘WN x,w) (fory € Y,y > —mand w € £2)is defined in (65). To simplify notation we write Zf,‘sw” (w) instead of

Af !,:,/” (w). Note that assertion of Lemma 3 will be valid if we replace ﬁ,’z\ byﬁi,g.

Now we turn to the central limit theorem for I::r\rK (fPA > &n). In contrast to [3] we will consider not only nonbinary re-
sponse variable Y but also an arbitrary penalty function 1// It is quite natural that in this case we make some assumptions
concerning the joint asymptotic behavior (as N — o0) of estimates v (y, &(Wy)), ¥ € Y, and random variables Y/, f# (X/)
withj € Wy.

For N € N and Wy set

Oy = (@GN, @N,—m)T,...,@N,m)")"

where @(N) is the random vector with components %(N) = J(y, Ev(Wy)),y € Y,and @ (N, z), z € Y, are random vectors
with components

a,(N,z) = Y =z ffX) =y}, yeVY.

N jewy

To simplify notation we often write ¥ (N), GN and a(N, z) instead of 1/I(N Wh), GN(WN) and @® (N, z, Wy), respectively.
Define also

0= (", @-m)T,.... @m)’)’
where v is non-random vector with components v, = ¥ (y),y € Y, and a(z), z € Y, are non-random vectors with compo-
nentsa,(z) =P(Y =z ,fA(X) =y),y € Y. The same symbol is used here for a penalty function and a vector ¥ because we
simply arrange all values of a penalty function in a column. Note that Oy and 6 are vectors of dimension Cm+1)C2m+2).
We also introduce vector v with components v, = (@) Tq(),y € Y, and vectors y(z) = ¥ (2)q(z),z € Y. So, we can
formulate the CLT.

Theorem 3. Let ey — 0and N'/?gy — ocoas N — oo. Take anyvector,B (my,...,m)withl <m; <...<m, <n,the

corresponding function f = f# and prediction algorithm defined by fpa = pr - Assume that for any sets Wy satlsfymg (68) one
has

VEWN By (Wy) —6) =% R~ N (0,0), N — oo, (69)
where & (0, C) stands for the multidimensional normal law. Then the following relation holds
VNErri (foa. 8) — ErT(F)) <5 Z ~ N (0,0%), N — oo. (70)

Hereo? = ATChand i := (v, (y (=m)T, ..., (y(m)T)".
Proof. For a fixed K € Nand any N € N set

2m—1
T = = I Y] =y, X] _ . i
v Z S 2 Y vo 3 iy =y o) -yl
o~ 1 K 1 2m—1 . ; ]
T, = — c Iy = , Xy — .
N(f) K LZI ﬁsk(N) ; i—m;y\fm WNJ (Y)je%) { Y |f( ) Y| g l}

where Yy ¢(¥) = ¥ (¥, Ex(Sk(N))). One has
Erry (fon, Ex) — Err(f) = (Erric (fon, Ex) — In (D) + () — Tn(F)) + (Tn(F) — Err(F)).

First of all we show that

VNErri(fon, €8) = Tu(F) —> 0, N — oo (71)
Using (21) one can write
2m—1
Erry(fon. &n) — Tn (f) = Zus, N Y v Y Y =y ). (72)

i=0 i—m<[y|<m JESK(N)
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We define the random variables

G ) = ', y)

«/W Z {Y]_Y}FI\(;)k

JESK(N)
and verify that foreachk =1, ..., K

2m—1
-~ i P
> UGNy — 0, N — oo (73)
i=0 i—m<l|y|<m
Clearly (73) implies (71) in view of (72) as #Sx(N) = [N/K] fopk =1,...,K—1and [N/K] < 8S¢(N) < [N/K] + K. For
each i, N, k under consideration and U defined by (63) write Gg?,((y) G(') U(y) + G(') X\U (y) where

1 . )
Gy X e ViT{Y = y}F, ¢ V CX.
0 = T 2 W e VILY = IR0 y),
JESK(N)
Obviously,
GE O = VESKN) Y [{lfea(x. En(SeND)) = y| > i} = H{If &) — y| > ).
xeU
Functions fps and f take values in the set Y. Thus, forany x € U,k = 1,...,K and almost all w € £2 relation (17) with
U given by (63) ensures the existence of an integer N;(x, k, w) such that fps(x, EN(Sk(N))) = f(x) for N > Ni(x, k, w).
Hence G,(\}),(U (y) = 0 for any y belonging to Y, eachi = 0,...,2m — 1,k = 1,...,K and almost all ® € £2 when

N > Ny(w) = Mmaxyeu k=1,...x N1(X, k, »). Evidently, Ny < oo a.s. because #X < oo. We obtain that

2m—1

Y UGy ®) = 0 as. N — oo, (74)

i=0 i—m<|y|<m

If U = X then G;Vl)kx\u (y) = Oforalli, N, k and y under consideration. Consequently, (73) is valid and thus, for U = X,
relation (71) holds. Let now U # X. In view of (4) we can claim that

X\ U = Ujcy.y-1B. (75)

We have seen in Section 2 that each B appearing in (75) can be represented by way of B; = D; ,, for some t, z € Y such that
t<z,withj={yeY:t<y<z}and

D, ={xeX\U: Lf(x) <0,—-m<y<t; Lff(x) =0,t<y=<z Lff(x) >0,y > z}. (76)
Thenfork=1,...,Kand N € None has

2m—1 R N m z—1 2m—1 )

Y2 o m= 3 3 3 D Pny).

i=0 i—m<|y|<m z=—m+1t=—mxeD;, =0 i—m<|y|<m
Here

() U (y) i i @)
Oy (%, y) = —— ) X =x,Y =y}F | (x¥).
Nk Q) ES%(N) Nk

Using (27), (28) and (35) we come to the formula

2m—1

YooY oy = VSN TV %) TIN, x. k. 1)

i=0 i—m<|y|<m

where the components of random vector I(N, x, k, t) are given in (30).

Ifx e X\ U)NX\M) then cb,f,’)k(x, y) = 0 as. for all i, N, k and y under consideration. Let now x € (X \ U) N M,
i.e.xe MND,,forsomet,zeY such that t < z. Then f(x) = t according to (76). We will show that

VES((N) M x)TI(N, x, k, t) —> 0, N — oo. (77)
One has (™ (x)) TI(N, x, k, £) = R} (. t) + Ry} (. t) where

~ I
RO 0 = S T L (N x k1), 1= 1,2,
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Here Z“) and Z(Z) are takenovery € (Y \ {—m}) \ (t,z]andy € (Y \ {—m}) N (t, z], respectively. Clearly,

RO 01 < 3 1 v G ¢ L8, 21} TV o).

Foranyx € D;,,k = 1,...,K and almost all w € $2 relations (65) and (66) ensure the existence of an integer N3(x, k, w)
such that fpa(x, SN(Sk(N) a))) € [t,z] for N > N3(x, k, w). Hence R;\,l)k(x, w) = 0foranyx € D;;,eachk = 1,...,K and
almost allw € £2 when N > N3(@) = MaXep, , k=1,..k N3(X, k, w). Thus
SN RY} (%, £) = 0 as., N — oo. (78)
Further on
@ —
R (. 01 < D7 Hfon(x. &n(SeN))) # £} LY (). (79)

Let us prove that, foranyx e MND;;andk =1, ... K,

T{foa (X, &n(Sc(N))) # £} —> 0, N — o0. (80)

For any » > 0 we have

P, x GeM) # 1} > 20 = P (5000 + ew = ULV (0 +ew < 0}).

For almost every w € §2 there exists a positive integer Ny = Ny(x, k, w) such that the inequalityff’sk(m x,w) +ey <0
holds for x € D; ; and N > N,. Taking into account that, for any events F and H, one has {F UH} = I{F} + I{H} — I{F N H}
we see that validity of (80) is equivalent to

P ™M (x) + ey <0) > 0, N— o0,

(,/ﬁsk(N YIPS® () < —5,\”/11%) >0, N— oo. 81)

Consider sets Wy C {1, ..., N} such that § Wy — oo as N — oo. Obviously, foranyx € Xandy € Y,

or

Mo =T 0 + (0" 00 — T ™ () (82)
and
I (x) = Z P (x).
N jewy

Here we write fyﬂ’j(x) instead offf'{” (x). One has EZf’j(x) = Lf,} (x) =0forallj € N,x € D;, andy € (t, z]. The CLT holds

for an array of bounded centered i.i.d. random variables {Z'yg i (x),j € Wy, N € N}. Namely, for a given $ and all considered
xand y,

Zna (%, y; B) = EWN TN () 25 Zy(x, 35 B) ~ N (0, 07,3 B)), N — oo, (83)

where of(x,y; B) = var Lf’](x),j € Wy. Further on

VEWN @ (0) — BN (1) = (B, & (W) — ¥ (1) —= Z b =x5.Y =y).

JEWN
= Hy2(x,y; B) + Hn3(x,y; ,3)

where
Hy 2%, 5 B) = (§ (v, En(Wy)) — ¥ (D)VEWNP(Xg = x5, Y = y),

Hy3(.y: B) = (W (. En(Wh)) — ¥ () ﬁZ(H{xj;=xﬁ,vf=y}—EH{x;;=xﬂ,Yf=y}).
JEWN

Fori = 2, 3, we consider the random vector Hy ;(x; 8) with components Hy ;(x, y; 8),y € Y. In view of (69) we know that

law

Hy2(x; ) — Ha(x; B) ~ N (0, G(x; B)), N — oo.
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Here the matrix G, (x; 8) has entries d,, , ., 4, and D = (d,, ,) is the matrix coinciding with (2m + 1) x (2m + 1) left upper
corner of the initial matrix C introduced in (69), the vector © = u(x; B) has components 1, = P(Xg = X3, Y = u) and
u,vey.

Due to SLLNA one has

—Z(H{ _xﬂ,Yj=y}—E]I{Xf3=x5,Yj=y})—>0 as., N — oo.

N jewy

Hence, forany x,y € Y,

Hy3(x.y: B) —> 0, N — oo. (84)

We can write

VEWN (LMY () — T (x)) = Zy 2 (x. v B) + Z 3 (2. y; B) (85)
where according to (42) and (47)

Zni(x.y; B) = (Hyix; B) T A), i=2,3.
Consequently,

!
Zn2(%, Y B) == Zr(x,y; B) ~ N(0,02(x,y; B)), N — o0,

with o; 2(x,y; B) = (AW) T G, (x; B) A(y). By virtue of (84)

Zns(x.y: B) — 0, N — oo. (86)

Thus in view of (82), (83) and (85), for each y € (t, z] and x € D, ,, we have

3
P(VEWN T (0 < —env/EW) < )P (Zuitey: B) < —5-V/iWn). (87)

i=1

Let (Zy)nen be a sequence of random variables such that Zy Lo Z asN — oo where Z has a (possibly degenerate) Gaus-
sian distribution. Then, for any sequence of real numbers (cy)nen Satisfying relation cy — —o0, one has P(Zy < ¢y) — 0,
N — oo. The latter statement becomes obvious if Z is degenerate. For Z having continuous distribution function we take
into account that the distribution functions of Zy, N € N, converge to the distribution function of Z uniformly on R. Hence,
taking (ey)nen Such that ey+/g Wy — 00,as N — 00, we establish that the right-hand side of (87) tends to 0.

Puty = t + 1 (it is possible because y € (t,z] N Y wheret,z € Yandt < z), Wy = S¢(N),k = 1, ..., K. Note that
1S (N) > (K — 1)[N/K] foreachk = 1, ..., K. We conclude that (81) is satisfied when syN'/?> — oo as N — oo. Thus, we
come to (80).

Note that, L, ”(x) WN ) if 8 =(1,...,n),forx € Xandy € Y such thaty > —m. Therefore using (82)-(86) we
obtain, forx € D; , andy e (t,z] NY, the estlmate

3
VEWNIEN ] <Y Zix,y)l (88)
i=1

where Z\,,i(x, y) is the same as Zy ;(x, y; B) evaluated for 8 = (1,...,n) and i = 1, 2, 3. Hence setting now Wy = S;(N)
we see that (78)-(88) lead to (77). Thus we have

2m—1

3> ey @) > 0. N oo (89)

i=0 i—m<|y|<m

Taking into account (74) and (892 we come to (73). Consequently, (71) is verified.
Now we turn to the study of Ty (f) — Ty (f). One has

VNN () = Tv(f))

VN & 1 ] R A |
e — ] — Y .
C K &SN Y 2 G —ven Y WY =y o) -yl > i)

k: i=0 i—m<|y|<m JjeSK(N)
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PutZ(y) =I{Y/ =y, [f(X/) —y| > i},i=0,...,2m—1,j=1,...,N,y € Y.Foreachk = 1,...,K

2m—1
YNY T @) — v ) DY =y, ) —yl > i}
i=0 i—m<ly|<m ﬁs"(N) JESKN)
2m—1 . .
=VNY D ) =Y Y @) —EZ )
i=0 i—m<|y|<m &Sk (N) JESK(N)

2m—1

HVYNY T @) — v OIPKY =y, [FX) —y| > ).

i=0 i—m<|y|<m

Since N/f Sx(N) — K foreachk =1, ...,K,as N — oo, we conclude, taking into account SLLNA and relation (69), that
2m—1
; i P
YN ) — Y0 S > @) -EZy) — 0. N— oo
i=0 i—m<l|y|<m g ( )JGSk(N)

We can write
2m—1

YD ) — YOI =y, [FX) —yl > i)

i=0 i—m<ly|<m

= i) — Y@ q) = @ N, ScN)) — ¥) v,

yey

Consequently the limit distribution of \/N[(/T\N f) =Tn()) + (Tn(f) — Err(f))] will be the same as that for random variables
1Tn ~
VNI () = Er(F)) + - 3 (N, Se(N) = 9) Tv].
k=1
Note that

1 K
(Tn() —Err (D) = 2> > V@)W, 2, 5(N) — 02)) "q(2)

k=1 zeY

1 K
22 @N. 2, 5(N)) —a@) Ty @.

k=1 zeY
Therefore
1 K . f K
VNI () = Err(F) + — Y (N, Se(N)) — ) vl = == " @ (Sk(N)) — 6) "o
K & K &
According to (69), foreachk =1, ..., K, one has
VESN) @ (S(N)) — 6)TA = R ~ N(0, 37 CA).
Since, for each N € N, collections of random variables &y(S{(N)), ..., én(Sk(N)) are independent we can claim that
Ry, ..., Ry are independent. Again recalling that N/gS,(N) — K fork = 1,...,K,as N — oo, we come to (70). The

proof is complete. O

Remark 9. In Theorem 3 we can relax condition (69) by employing only Wy = S,(N) and Wy = Si¢(N) fork = 1,...,K
andN € N.

Corollary 3. Let Y be the penalty function defined in (49) and @N,k(y) be the estimate introduced in (50) with Wy = Si(N),
k=1,...,Kwhere K € N.Let ey — 0and N'/?ey — oo as N — oo. Then, for any vector B = (my, ..., m,) with
1< my<...<m, <n, the corresponding function f = f# and prediction algorithm defined by foa = ﬁi,g' the following relation
holds

law

VNErri (fon, £8) — Er(f)) —> Z ~ N (0,0%), N — oo. (90)

Here o2 is variance of the random variable

V= Zmzl 3 1y = y} () —yl > i X iy = 91
= yl>i} =PUfX) —yl > |y =y)). (91)

i=0 i— m<\y\<m
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It is easily seen that conditions of Theorem 3 are satisfied for this particular but important choice of i and its estimates.
However, it seems more simple to note that, foreachy € Yandk =1, ... K,

=~ P
Ps,)(Y =y) —> P(Y =),

I
VISKN) Ps,ny (Y = y) — P(Y = y)) —> Za(y) ~ N (0, 57(1)),

as N — oo, where o 2(y) = P(Y # y)P(Y = y). Then one can employ the Slutsky lemma to show that the limit behavior of

VN[(TN(f) — Tn(f)) + (T (f) — Err(f))] will be the same as for

YN~ 1 i _ gy
Tkz s 2 VT E

JeSk(N)

where i.i.d. random variables V/, j € N are defined by way of
2m—1

P =y, fX) —yl > )
=> Y (Y_)(H{ww) yl > i) — Y =) )

i=0 i—m<|y|<m

Thus we come to the statement of Corollary 3.
Recall that for a sequence of random variables (ny)ney and a sequence of positive numbers (cy)yen ONe writes ny =

op(cy) if nn/cn N 0,N — oc.

Remark 10. As usual one can view the CLT as a result describing the exact rate of approximation for random variables under
consideration. Theorem 3 implies that

Erry(fon, £x) — Err(f) = 0p(cy), N — o0, (92)

where cy = o(N~Y?). The last relation is optimal in a sense whenever o2 > 0, in other words it is impossible to take
=0(N~ 1/2) in (92). One can verify that the same asymptotic result as in Corollary 3 is true if WN «(¥) is defined according

to(50)w1th Wy =S(N),k=1,...,K,N e N.

Remark 11. Using (91) or Theorem 3 one can show that

1 1 2
ol =) ————— @y QW o q®) - s—— (@) "ay) }
yGZY: (P(Y =))? [ P = | )
where o stands for the Hadamard product of two vectors, i.e. g(y) o q(y) has components q(y)f, z € Y. Therefore it is not

difficult to construct the consistent estimates Gy of unknown o appearing in (90) and (if 2 % 0) we can claim that under
conditions of Corollary 3

law

VN ~ z
TN(EWK(fPA’SN) Err(f)) — e N(0,1), N — oo.

Now we consider the multidimensional version of Corollary 3. Employing the Cramér-Wold device and the proof of
Theorem 3 we come to the following statement.

Corollary 4. Let conditions of Corollary 3 be satisfied. Then, for any a(l) = (m(') .. '))such that 1 < m(’) << m(l) <n
wherel =1, ...,j,j € Nyand each K € N, one has

YN@EDP, Lz T B 72~ 4(0,B), N — 0.
Here Z,f,) = E\rrK(fPA e EN) — Err(f*®), 1 =1, ...,j, and the elements of covariance matrix B = (b p) have the form

bip = cov(V(a())), V(a(p)), Lp=1,...,]
the random variables V (« (1)) being defined in the same way as V in (91) with f# replaced by f*®.

To conclude we note (see also Remark 11) that one can construct the consistent estimates EN of the unknown
(nondegenerate) covariance matrix B to obtain the statistical version of the last theorem. Namely, under conditions of
Corollary 4 the following relation is valid

~ _ I _
By 2@, ...z 5 B2 ~ N (0,1), N— oo,
where [ stands for the unit matrix of order j.

It is worth mentioning that in [5] we demonstrate by simulation that our method leads to correct identification of
significant factors even for samples having rather modest size.
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