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a b s t r a c t

For nonbinary response variable depending on a finite collection of factors with values in a
finite subset of R the problem of the optimal forecast is considered. The quality of predic-
tion is described by the error function involving a penalty function. The criterion of almost
sure convergence to unknown error function for proposed estimates constructed bymeans
of a prediction algorithm and K -fold cross-validation procedure is established. It is demon-
strated that imposed conditions admit the efficient verification. The developed approach
permits to realize the dimensionality reduction of factors under consideration. One can
see that the results obtained provide the base to identify the set of significant factors. Such
problem arises, e.g., inmedicine and biology. The central limit theorem for proposed statis-
tics is proven as well. In this way one can indicate the approximate confidence intervals for
employed error function.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The high dimensional data are widely used in various stochastic models. Such data arise naturally when a response
variable Y depends on a number of factors X1, . . . , Xn. For instance, in medical and biological studies Y can describe the
state of the health of a patient, e.g., Y = 1 or Y = −1 mean that a person is sick or healthy, respectively. The challenging
problem is to find in huge number of given factors the collection Xk1 , . . . , Xkr of significant ones which are responsible for
certain complex disease provoking (see, e.g., [14]). Note also that in pharmacological studies the values−1 or 1 of a response
variable can describe efficient or nonefficient employment of some medicine (see, e.g., [19]). Thus solution of the problem
to identify the set of significant factors has important applications even for binary response variable.

Nowwe assume that Y takes values in a finite subset of R (with more than two elements in general) and X1, . . . , Xn take
values in arbitrary finite set. This assumption is quite natural, e.g., for medical applications because we can consider the
health state of a patient in more detail. In Section 2 we will describe our general model.

There are many complementary approaches concerning the prediction of response variable and the identification of the
significant combinations of factors. Such analysis in medical and biological investigations is included in the special research
domain called the genome-wide association studies (GWAS). The progress in this domain is discussed in the recent paper [27].
Among powerful statistical tools applied in GWAS one can indicate the principal component analysis [11], logistic and logic
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regression [20,21,23], LASSO [12,25] and various methods of statistical learning [10]. Mention in passing that there are
newmodifications of these methods. In the present paper we concentrate on the development ofmultifactor dimensionality
reduction (MDR) method. This method was introduced in the paper by M. Ritchie et al. [18] for binary response variable. It
goes back to the Michalski algorithm [13]. During the last decade more than 300 publications were devoted to this method.
We are also interested in the dimensionality reduction. However instead of consideration of contingency tables (to specify
zones of low and high risk) presented in [18] andmany subsequentworkswe choose another way. Note that researchers use
different terminology for specified approaches leading to dimensionality reduction of factors. For instance in [7,15,16,22] the
authors propose the following methods: MDR-PDT (pedigree disequilibrium test), MDR-SP (structured populations), Gene-
based MDR and MDR-FS (feature selection), respectively. We could call our method MDR-EFE (error function estimation).
Contributions containing various improvements of the original MDR method are available also, e.g., in [6,9,17,19].

To predict Y we use some function f in factors X1, . . . , Xn. The quality of such f is determined by means of error function
Err(f ) involving a penalty function ψ . This penalty function allows us to take into account the importance of different
values of Y . As the law of Y and X = (X1, . . . , Xn) is unknown we cannot find Err(f ). Thus statistical inference is based
on the estimates of error function. Developing [2–4] we propose (in more general setting) statistics constructed by means
of a prediction algorithm for response variable and K -fold cross-validation procedure. One of our main results gives the
criterion of strong consistency of the mentioned error function when the number of observations tends to infinity. The
strong consistency is essential because to identify the ‘‘significant collection’’ of factors we have to compare simultaneously
a number of statistics.We demonstrate that this criterion admits the efficient employment evenwhen instead of the penalty
function one uses its strongly consistent estimates. In contrast to [2] the situation with the choice of the penalty function is
more complicated.

We demonstrate the stability of proposed statistics. Namely, the central limit theorem (CLT) is proven for error function
estimates in the framework of prediction algorithm, the penalty function and K -fold cross-validation for nonbinary response
variable (for binary response variable such CLT was established in [3]). Also we pay attention to specification of the optimal
forecast of Y and identification of the significant collection of factors.

The paper is organized as follows. Section 2 contains notation and auxiliary results. Here we discuss the problem of
optimal (in a sense) prediction of nonbinary response variable with values in a finite set Y ⊂ R by means of a collection
of factors taking values in arbitrary finite set. For this purpose we define the prediction error involving a penalty function.
In Section 3 we introduce prediction algorithm and for i.i.d. vectors of observations construct the estimator of unknown
prediction error. The main result here (Theorem 1) provides the criterion of almost sure convergence of these estimators
to prediction error. We also prove two corollaries containing conditions which are easy to handle. Section 4 is devoted to
applications. Namely, we consider two important examples of prediction algorithm and verify conditions of the mentioned
corollaries. Section 5 can be viewed as the foundation for dimensionality reduction of factors (see Theorem 2). In Section 6
we prove the central limit theorem (Theorem 3) for appropriately normalized and regularized estimators of error function.
We complete the paper bymultidimensional version of the CLT and some remarks permitting to find approximate confident
intervals for unknown error function. The applications of developed method to simulated data are considered in [5].

2. Notation and auxiliary results

Let X = (X1, . . . , Xn) be a random vector with components Xk : Ω → {0, 1, . . . , s} where k = 1, . . . , n and s, n ∈ N. All
random variables are defined on a probability space (Ω,F , P). Set X = {0, . . . , s}n, Y = {−m, . . . , 0, . . . ,m}, herem ∈ N.
We assume that Y : Ω → Y, f : X → Y and a penalty function ψ : Y → R+. The trivial case ψ ≡ 0 is excluded.

Remark 1. For instance in medicine one has the response variable which characterizes the state of the health of a patient
by means of predetermined scale reflecting the progress of the disease. If such values constitute the set {0, 1, . . . ,m} then
our model comprises this situation since Y can take the values {−m, . . . ,−1} with probability 0. Moreover, we can assume
that Y takes arbitrary rational values 0 ≤ x1 ≤ · · · ≤ xm where xk = sk/M (sk ∈ N, M ∈ N, k = 1, . . . ,m). Then we use
the correspondence xk → sk, k = 1, . . . ,m, and consider Y = {−sm, . . . , 0, . . . , sm}. We employ the strongly consistent
estimates of a penalty function (involving data) and if we know that P(Y = y) = 0 for some y ∈ Y then we can take
ψ(y) = 0 and ψN(y) ≡ 0 for such y (N ∈ N) and our results will hold true as we will see further on. Note also that we can
specify the importance of deviation of f (X) from Y involving the penalty function ψ .

For y ∈ Y, consider the set Ay ={x ∈ X : f (x)=y} and putM = {x ∈ X : P(X =x)>0}. Introduce the error function

Err(f ) := E|Y − f (X)|ψ(Y ).

It is easily seen that one can write Err(f ) as follows

Err(f ) =


y,z∈Y

|y − z|ψ(y)P(Y = y, f (X) = z) =


z∈Y


x∈Az

w⊤(x)q(z). (1)

Here q(z) is the zth column of (2m + 1) × (2m + 1) matrix Q with entries qy,z = |y − z|, y, z ∈ Y (the entry q−m,−m is
located at the left upper corner of Q ),

w(x) = (ψ(−m)P(Y = −m, X = x), . . . , ψ(m)P(Y = m, X = x))⊤
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and ⊤ stands for transposition. All vectors are considered as column-vectors. Further ♯ A means the cardinality of a finite
set A.

Let us describe f : X → Y which is a solution of the problem Err(f ) → inf. In other words we search for a partition Ay,
y ∈ Y, of a set X such that a function

f =


y∈Y

y I{Ay} (2)

has the minimal Err(f ). We call any solution f of this problem an optimal function.
For each nonempty set J such that J ⊂ Y (‘‘⊂’’ is used as ‘‘⊆’’) put

BJ = {x ∈ X : w⊤(x)q(y) = w⊤(x)q(z), y, z ∈ J;w⊤(x)q(y) < w⊤(x)q(v), y ∈ J, v ∈ Y \ J}. (3)

If J = Y then BY = {x∈X : w⊤(x)q(y)=w⊤(x)q(z), y, z∈Y}. Note that BJ ∩ BI = ∅ if J ≠ I (I, J ⊂ Y). Moreover,

∪J⊂Y,J≠∅ BJ = X. (4)

We write By for BJ when J = {y}, y ∈ Y. Let I{A} be an indicator of a set A. As usual I{∅} = 0.
In view of (1) one can claim that By ⊂ Ay for each y ∈ Y. If∪y∈Y By ≠ X then, for any x ∈ X\∪y∈Y By, there exists J = J(x)

such that x ∈ BJ where J ⊂ Y and ♯ J > 1. Then one can include x in any Ay with y belonging to J (i.e. enlarge one of the sets
By, y ∈ J , by means of element x). In such a way we obtain that Ay = By ∪ Cy where Cy, y ∈ Y, form a partition of the set
X \ ∪y∈Y By. Obviously the proposed construction leads to f with minimal Err(f ). Other choice of Ay, y ∈ Y, would lead to f
with greater Err(f ) than one for a function proposed above. Thus we come to elementary

Lemma 1. Any function f : X → Y providing the solution to the problem Err(f ) → inf has the form (2)with Ay, y ∈ Y, specified
above.

Remark 2. Clearly, we can specify the unique way to construct the sets Cy, y ∈ Y. For example, if X \ ∪y∈Y By ≠ ∅ then,
for each x ∈ X \ ∪y∈Y By, we find the unique BJ such that x ∈ BJ (J = J(x), J ⊂ Y, ♯ J > 1). If J = {y1, . . . , yr} where
y1 < · · · < yr we include x in Cy1 . Note also that we can consider the optimal f with A∗

y = Ay ∩ M for y ∈ Y \ {−m} and
A∗

−m = A−m ∪ (X \ M).

Our next aim is to provide the convenient form for an optimal function f and rewrite Err(f ) in appropriate manner. For
this purpose we represent By in the following way

x ∈ By ⇐⇒

w
⊤(x)q(−m) < w⊤(x)q(−m + 1), y = −m,

w⊤(x)q(y) < w⊤(x)q(z), z = y ± 1, y ≠ ±m,
w⊤(x)q(m − 1) > w⊤(x)q(m), y = m.

(5)

Note that By can be an empty set. To show that (5) is true we define, for y ∈ Y, y > −m, the vector∆(y) :=q(y)−q(y − 1).
Clearly,

∆(y) = (1, . . . , 1  
m+y

,−1, . . . ,−1  
m−y+1

)⊤. (6)

Inequalityw⊤(x)q(y) < w⊤(x)q(y+ 1) is equivalent to the following onew⊤(x)∆(y+ 1) > 0. For all x ∈ X the vectorw(x)
has nonnegative components

wy(x) := ψ(y)P(Y = y, X = x), y ∈ Y. (7)

Therefore inequalityw⊤(x)∆(y+ 1) > 0 and (6) yieldsw⊤(x)∆(z) > 0 if z ≥ y+ 1 (z ∈ Y). For z ≥ y+ 1 (z ∈ Y), one has

w⊤(x)(q(z)− q(y)) =

z
k=y+1

w⊤(x)∆(k). (8)

Consequently,w⊤(x)(q(z)−q(y)) > 0. In a similar way one can see that inequalityw⊤(x)q(y) < w⊤(x)q(y−1) implies, for
t < y, t ∈ Y, relationw⊤(x)q(y) < w⊤(x)q(t). Thus (5) is established. Employing (8)we observe that the set J = {y1, . . . , yr}
appearing in Remark 2 has the form {y1, y1 + 1, . . . , y1 + r − 1}.

For x ∈ X, consider the vector L(x) having the following 2m components

Ly(x) := w⊤(x)∆(y) = w−m(x)+ · · · + wy−1(x)− wy(x)− · · · − wm(x), (9)

here y ∈ Y, y > −m. Then, due to (5) one has, for each y ∈ Y,

x ∈ By ⇐⇒

L−m+1(x) > 0, y = −m,
Ly+1(x) > 0, Ly(x) < 0, y ≠ ±m,
Lm(x) < 0, y = m.

(10)

Further we will use the property of the vector-function L(x), x ∈ X, containing in the following statement.
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Lemma 2. Let Lt(x) = 0 and Lz(x) = 0 for some x ∈ X, t, z ∈ Y, −m < t < z. Then Ly(x) = 0 for any y ∈ Y such that
t ≤ y ≤ z.

Proof. For each x ∈ X the vector w(x) has nonnegative components. Formula (9) shows that for any x ∈ X the function
Ly(x) is nondecreasing function in y (y ∈ Y, y > −m). This observation leads to the desired statement. �

Using Remark 2 it is convenient to make the following choice of the optimal function fopt . Namely, according to (10) we
can write

fopt(x) = y ⇐⇒

L−m+1(x) ≥ 0, y = −m,
Ly+1(x) ≥ 0, Ly(x) < 0, y ≠ ±m,
Lm(x) < 0, y = m.

(11)

In fact, according to Remark 1 we have Am = Bm and therefore we write in (11) the strict inequality Lm(x) < 0 when y = m.
Now consider random vectors ϕ and χ with the respective components

ϕy = ψ(y)I{Y = y}, χy = I{X ∈ Ay}, y ∈ Y.

Then we can rewrite (1) as

Err(f ) = Eϕ⊤ Qχ.

Note that Q can be represented as the sum of 2m symmetric matrices with 0 and 1 entries.

Q =



0 1 1 . . . 1 1 1
1 0 1 . . . 1 1 1
1 1 0 . . . 1 1 1
...

...
...

. . .
...

...
...

1 1 1 . . . 0 1 1
1 1 1 . . . 1 0 1
1 1 1 . . . 1 1 0


+



0 0 1 . . . 1 1 1
0 0 0 . . . 1 1 1
1 0 0 . . . 1 1 1
...

...
...

. . .
...

...
...

1 1 1 . . . 0 0 1
1 1 1 . . . 0 0 0
1 1 1 . . . 1 0 0


+ · · · +



0 0 0 . . . 0 0 1
0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0


.

In other words,

Q =

2m−1
i=0

Q (i) (12)

where thematrix Q (i)
= (q(i)y,z)y,z∈Y has entries q(i)y,z = 0 if |y−z| ≤ i and q(i)y,z = 1 otherwise. Formula (12) permits to rewrite

Err(f ) as follows

Err(f ) =

2m−1
i=0


i−m<|y|≤m

ψ(y)P(Y = y, |f (X)− y| > i). (13)

Here we take into account that in representation of Q as the sum of matrices some of these matrices have rows containing
only zero entries. Thus we obtain formula (13) which is the key formula for Err(f ) further analysis.

3. Criterion of prediction error estimates strong consistency

The lawof (X, Y ) is unknown, therefore, for a given f : X → Y, we cannot calculate Err(f ). Thus it is natural that statistical
inference concerning the quality of prediction of the response variable Y bymeans of f (X) is based on the estimates of Err(f ).

Let ξ 1, ξ 2, . . . be a sequence of independent identically distributed (i.i.d.) random vectors (X1, Y 1), (X2, Y 2), . . . having
the same law as (X, Y ). For N ∈ N, set ξN = (ξ 1, . . . , ξN). We will use approximation of Err(f ) by means of ξN (as N → ∞)
and a prediction algorithm (PA). This PA employs a function fPA = fPA(x, ξN) defined for x ∈ X and ξN and taking values in Y.
More exactly, we operate with a family of functions fPA(x, vp) (with values in Y) defined for x ∈ X and vp ∈ (X × Y)p where
p ∈ N, p ≤ N . To simplify the notation we write fPA(x, vp) instead of f pPA(x, vp). For S ⊂ {1, . . . ,N} we set ξN(S) = {ξ j, j ∈ S}
and S := {1, . . . ,N} \ S. For K ∈ N (K > 1), introduce a partition of a set {1, . . . ,N} into the subsets

Sk(N) = {(k − 1)[N/K ] + 1, . . . , k[N/K ]I{k < K} + NI{k = K}}, k = 1, . . . , K ,

here [a] is the integer part of a number a ∈ R. Following [2] we can construct an estimate of Err(f ) involving ξN as well as
prediction algorithm defined by fPA and K -cross-validation (on cross-validation we refer, e.g., to [1]). Namely, set

ErrK (fPA, ξN) :=

2m−1
i=0


i−m<|y|≤m

1
K

K
k=1


j∈Sk(N)

ψ(y, ξN(Sk(N)))I{AN(y, i, k, j)}
♯Sk(N)

. (14)
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Here AN(y, i, k, j) = {Y j
= y, |fPA(X j, ξN(Sk(N)))−y| > i} and, for each k ∈ {1, . . . , K}, let ψ(y, ξN(Sk(N))) be strongly

consistent estimates of ψ(y) (as N → ∞) for all y ∈ Y, i.e.ψ(y, ξN(Sk(N))) → ψ(y) a.s., y ∈ Y, N → ∞. (15)

We want to guarantee that convergence (in a certain sense) of fPA(·, ξN) to f (·) as N → ∞ implies the relationErrK (fPA, ξN) → Err(f ) a.s., N → ∞. (16)

In what follows the sum over empty set is equal to zero as usual.

Theorem 1. Let ξ 1, ξ 2, . . . be a sequence of i.i.d. randomvectorswith the same law as (X, Y ),ψ be a penalty function, f : X → Y
and fPA define the prediction algorithm. Assume that there exists nonempty set U ⊂ X such that for each x ∈ U and every
k = 1, . . . , K one has

fPA(x, ξN(Sk(N))) → f (x) a.s., N → ∞. (17)

Then (16) holds if and only if

K
k=1


x∈X\U

w⊤(x)Q δ(N, x, k) → 0 a.s., N → ∞, (18)

where, for x ∈ X, N ∈ N and k = 1, . . . , K, the vector δ(N, x, k) has components

δy(N, x, k) = I{fPA(x, ξN(Sk(N))) = y} − I{f (x) = y}, y ∈ Y.

Proof. Let us show that asymptotic behavior of ErrK (fPA, ξN) as N → ∞ will be the same if one replaces ψ(y, ξN(Sk(N)))
by ψ(y) in (14). In other words relation (16) is equivalent to the following one

2m−1
i=0


i−m<|y|≤m

1
K

K
k=1


j∈Sk(N)

ψ(y)I{Y j
= y, |fPA(X j, ξN(Sk(N)))− y| > i}

♯Sk(N)
→ Err(f ) a.s. (19)

as N → ∞. Indeed, (15) holds and, for any ω ∈ Ω , i = 0, . . . , 2m − 1 and k = 1, . . . , K , one has

1
♯Sk(N)


j∈Sk(N)

I{Y j
= y, |fPA(X j, ξN(Sk(N)))− y| > i} ≤ 1.

For each y and i, due to the strong law of large numbers for arrays (SLLNA) (see, e.g., [24])

1
♯Sk(N)


j∈Sk(N)

I{Y j
= y, |f (X j)− y| > i} → P(Y = y, |f (X)− y| > i) a.s., N → ∞.

Consequently, for any k = 1, . . . , K we get

2m−1
i=0


i−m<|y|≤m


j∈Sk(N)

ψ(y)I{Y j
= y, |f (X j)− y| > i}
♯Sk(N)

→ Err(f ) a.s., N → ∞. (20)

For y ∈ Y, N ∈ N, k = 1, . . . , K and i = 0, . . . , 2m − 1, introduce the random variables

Q (i)
N,k(y) =

1
♯Sk(N)


j∈Sk(N)

I{Y j
= y}F (i)N,k(X

j, y)

where

F (i)N,k(x, y) := I{|fPA(x, ξN(Sk(N)))− y| > i} − I{|f (x)− y| > i}. (21)

In view of (20) relation (19) is equivalent to the following one

K
k=1

2m−1
i=0


i−m<|y|≤m

ψ(y)Q (i)
N,k(y) → 0 a.s., N → ∞. (22)

We can write Q (i)
N,k(y) = Q (i),U

N,k (y)+ Q (i),X\U
N,k (y), i = 0, . . . , 2m − 1, where

Q (i),V
N,k (y) =

1
♯Sk(N)


j∈Sk(N)

I{X j
∈ V }I{Y j

= y}F (i)N,k(X
j, y), V ⊂ X.
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In view of (17) we can examine Q (i),U
N,k (y). For y ∈ Y,N ∈ N, k = 1, . . . , K and i = 0, . . . , 2m−1, we come to the inequalities

|Q (i),U
N,k (y)| ≤


x∈U

I{|fPA(x, ξN(Sk(N)))− y| > i} − I{|f (x)− y| > i}
.

Functions f and fPA take values in Y. Thus (17) yields that for each x ∈ U , k = 1, . . . , K and almost every ω ∈ Ω one
can find an integer N1(x, k, ω) such that fPA(x, ξN(Sk(N))) = f (x) if N ≥ N1(x, k, ω). Therefore, Q

(i),U
N,k (y) = 0 for any

i = 0, . . . , 2m−1, y ∈ Y, k = 1, . . . , K and almost everyω ∈ Ω when N ≥ N1(ω) = maxx∈U,k=1,...,K N1(x, k, ω). Obviously,
N1 < ∞ a.s. because ♯U < ∞. Thus we have shown that

K
k=1

2m−1
i=0


i−m<|y|≤m

ψ(y)Q (i),U
N,k (y) → 0 a.s., N → ∞. (23)

Now we turn to analysis of Q (i),X\U
N,k (y). If U = X then Q (i),X\U

N,k (y) = 0 for all i,N, k and y under consideration. In this case
(23) is equivalent to (22). Thus for U = X the claim of theorem is verified. Let now U ≠ X. Set

τN(X \ U) =

K
k=1

2m−1
i=0


i−m<|y|≤m

ψ(y)Q (i),X\U
N,k (y).

Obviously,

τN(X \ U) =

K
k=1


x∈X\U

2m−1
i=0


i−m<|y|≤m

ψ(y)
1

♯Sk(N)


j∈Sk(N)

I{X j
= x}I{Y j

= y}F (i)N,k(x, y). (24)

Due to SLLNA, for each x ∈ X, y ∈ Y and k = 1, . . . , K ,

1
♯Sk(N)


j∈Sk(N)

I{X j
= x}I{Y j

= y} → P(X = x, Y = y) a.s., N → ∞. (25)

Thus (24) and (25) demonstrate that limN→∞ τN(X \ U) = 0 a.s. if and only if

νN(X \ U) :=

K
k=1


x∈X\U

2m−1
i=0


i−m<|y|≤m

wy(x)F
(i)
N,k(x, y) → 0 a.s., N → ∞. (26)

Taking into account that I{∪j∈J Dj} =
J

j=1 I{Dj} for pairwise disjoint sets D1, . . . ,DJ , we can write

νN(X \ U) =

K
k=1


x∈X\U

2m−1
i=0


i−m<|y|≤m


|r−y|>i

wy(x)δr(N, x, k)

=

K
k=1


x∈X\U


y∈Y

wy(x)
I(y)
i=0


|r−y|>i

δr(N, x, k) (27)

where I(y) = m − 1 + |y| for y ∈ Y. Note that

I(y)
i=0


|r−y|>i

δr(N, x, k) =

m
r=−m


i<|r−y|

δr(N, x, k) =

m
r=−m

|y − r|δr(N, x, k) = (Q δ(N, x, k))y (28)

as |r − y| − 1 ≤ I(y) for all r, y ∈ Y. Here (Q δ(N, x, k))y, y ∈ Y, are coordinates of the vector Q δ(N, x, k). Therefore (27)
and (28) yield that condition (26) is equivalent to (18). The proof is complete. �

Remark 3. Theorem1provides the criterionwhat one has to assume outside the ‘‘good set’’U where (17) holds to guarantee
the desired relation (16). Further we will see that it is possible to verify conditions (17) and (18) efficiently. Note also that
the statement of Theorem 1 will be true if instead of ξ 1, . . . , ξN we consider independent random vectors ξN,1, . . . , ξN,N
such that ξN,j := (X (N,j), Y (N,j)) has the same law as (X, Y ), j = 1, . . . ,N , N ∈ N.

Remark 4. In Theorem 1 we did not suppose that nonempty set U consists of all x∈ X satisfying (17). However, if relation
(17) holds for some u ∈ X \ U then fPA(u, ξN(Sk(N))) = f (u) a.s. for k = 1, . . . , K when N is large enough (i.e. N > N1(ω)).
Therefore relation (26) is equivalent to the analogous one where summation over x ∈ X \ U is replaced by summation
over x ∈ X \ (U ∪ {u}). Therefore we obtain an equivalent formulation of Theorem 1 if U consists of all x ∈ X satisfying
(17). Moreover, if there is no nonempty U ⊂ X such that (17) holds then relation (16) is equivalent to (18) with U = ∅.
Consequently, in Theorem 1 we need not assume that the set U is nonempty.
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Remark 5. Let (16) be satisfied and assume that, for some constant C0,ψ(y, ξN(Sk(N))) ≤ C0 a.s. for N ∈ N, k = 1, . . . , K , y ∈ Y. (29)

Then ErrK (fPA, ξN) ≤ 2m(2m + 1)C0, N ∈ N. Thus the Lebesgue theorem on dominated convergence implies thatErrK (fPA, ξN) is asymptotically unbiased estimate of Err(f ).

For N ∈ N, x ∈ X, k ∈ {1, . . . , K} and t ∈ Y, introduce the random vector I(N, x, k, t)with components

Iy(N, x, k, t) =


−I{fPA(x, ξN(Sk(N))) < y}, −m < y ≤ t,
I{fPA(x, ξN(Sk(N))) ≥ y}, t < y ≤ m.

(30)

If t = −m then {−m < y ≤ t} = ∅ and Iy(N, x, k,−m) = I{fPA(x, ξN(Sk(N))) ≥ y}, if t = m then {t < y ≤ m} = ∅ and
Iy(N, x, k,m) = −I{fPA(x, ξN(Sk(N))) ≤ y − 1}, here y > −m, y ∈ Y.

Corollary 1. Condition (18) of Theorem 1 is equivalent to the requirement

K
k=1


t∈Y


x∈X(t,U)

L⊤(x)I(N, x, k, t) → 0 a.s., N → ∞, (31)

where L⊤(x) := (L−m+1(x), . . . , Lm(x)), Ly(x), y = −m + 1, . . . ,m, are defined in (9) and X(t,U) := (X \ U) ∩ {x ∈ M :

f (x) = t}.

Proof. It is easily seen that condition (18) can be written in the following manner

K
k=1


t∈Y


x∈X(t,U)

w⊤(x)Q δ(N, x, k) → 0 a.s., N → ∞. (32)

Note that, for x ∈ X(t,U),

w⊤(x)Q δ(N, x, k) = w⊤(x)

y∈Y

I{fPA(x, ξN(Sk(N))) = y}(q(y)− q(t))

because


y∈Y I{fPA(x, ξN(Sk(N))) = y} = 1 and Q is symmetric matrix. For y, t ∈ Y, according to (8) and (9) we get

w⊤(x)(q(y)− q(t)) =


−Ly+1(x)− · · · − Lt(x), y < t,
0, y = t,
Lt+1(x)+ · · · + Ly(x), y > t.

If t = m then


t+1≤r≤y Lr(x) = 0 and if t = −m then


y+1≤r≤t Lr(x) = 0 as the sums over empty set. Changing the order
of summation we obtain

y<t

t
r=y+1

I{fPA(x, ξN(Sk(N))) = y}Lr(x) =

t
r=−m+1

r−1
y=−m

I{fPA(x, ξN(Sk(N))) = y}Lr(x)

=

t
r=−m+1

I{fPA(x, ξN(Sk(N))) ≤ r − 1}Lr(x). (33)

In a similar way one has
y>t

y
r=t+1

I{fPA(x, ξN(Sk(N))) = y}Lr(x) =

m
r=t+1

I{fPA(x, ξN(Sk(N))) ≥ r}Lr(x). (34)

Thus (33) and (34) entail

w⊤(x)Q δ(N, x, k) = L⊤(x)I(N, x, k, t). (35)

Combining relations (32) and (35) we come to (31). The proof is complete. �

Corollary 2. Let ψ be a penalty function, f : X → Y and the prediction algorithm be defined by a function (family) fPA. Suppose
that for some set U ⊂ X condition (17) is satisfied. Assume that for each t ∈ Y and any x ∈ X(t,U) there exist i = i(x), j = j(x)
belonging to Y, i < j, such that

i ≤ fPA(x, ξN(Sk(N))) ≤ j a.s. for k = 1, . . . , K (36)
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when N is large enough. Then the condition

Lmin{t,i}+1(x) = · · · = Lmax{t,j}(x) = 0 (37)

implies that (31) holds.

Proof. Obviously, for each x ∈ X(t,U), we have

L⊤(x)I(N, x, k, t) =

min{t,i}
y=−m+1

L⊤

y (x)Iy(N, x, k, t)+

m
y=max{t,j}+1

L⊤

y (x)Iy(N, x, k, t). (38)

In view of (30) every summand in the right-hand side of (38) will vanish a.s. for all N large enough by virtue of (36). Taking
into account that ♯ X < ∞ we obtain the desired statement. �

4. Applications

Example 1. Let ψ be a penalty function and f = fopt where fopt is defined in (11). For x ∈ X and a set WN ⊂ {1, . . . ,N}

introduce the random vector wWN (x, ω)with components

wWN
y (x, ω) =

ψ(y)
♯WN


j∈WN

I{Y j
= y, X j

= x}, y ∈ Y, (39)

here 0/0 := 0 (ifWN is empty). Put

fPA(x, ξN(WN , ω)) :=


y∈Y

y I{x ∈ AWN
y (ω)} (40)

where ξN(WN , ω) = {ξi(ω), ω ∈ Ω, i ∈ WN},

x ∈ AWN
y (ω) ⇐⇒


LWN

−m+1(x, ω) ≥ 0, y = −m,LWN
y+1(x, ω) ≥ 0, LWN

y (x, ω) < 0, y ≠ ±m,LWN
m (x, ω) < 0, y = m,

(41)

and LWN
y (x, ω) := (wWN (x, ω))⊤∆(y). (42)

We write ω in (39)–(42) to emphasize the randomness of variables under consideration. Clearly we can definefPA(x, vp) for
x ∈ X, vp ∈ (X × Y)p and then obtainfPA(x, ξN(WN)) appearing in (40) by setting v♯WN = ξN(WN).

Let us show that f and fPA satisfy conditions of Corollary 2 if we take

U = {x ∈ X : Ly(x) ≠ 0 for all y = −m + 1, . . . ,m}. (43)

One can claim that not only (17) is true butfPA(x, ξN(WN)) → f (x) a.s., N → ∞,

for any WN ⊂ {1, . . . ,N} such that ♯WN → ∞ (N → ∞). Indeed, according to SLLNA, for any x ∈ X, y ∈ Y, y > −m, and
such sets WN , one hasLWN

y (x, ω) → Ly(x) a.s., N → ∞. (44)

Let x ∈ U then, for each y > −m, y ∈ Y, we can claim that Ly(x) < 0 or Ly(x) > 0. Hence for almost everyω ∈ Ω there exists
N2 = N2(ω) such that eitherLWN

y (x, ω) < 0 orLWN
y (x, ω) > 0 when N > N2(ω). Thus (41) yields that condition (17) is true

for U defined by (43). Take now x ∈ X \ U . Then Lv(x) = 0 for some v ∈ Y, v > −m. In this case according to Remark 2 we
find in Y the subset J = J(x)with ♯ J(x) > 1 such that x ∈ BJ (see (3)). Then v ∈ J(x). In view of (11) we see that x ∈ X(t,U)
where t = min{y : y ∈ J(x)}. For any k ∈ {1, . . . , K} and all N large enough one hasfPA(x, ξN(Sk(N))) ∈ J(x) a.s.

Indeed, according to Lemma 2 we can state that Ly(x) ≠ 0 for y ∈ (Y \ J(x)) ∪ {t}, y > −m, and thus the relation
fPA(x, ξN(Sk(N))) ∈ Y \ J(x), for any k ∈ {1, . . . , K} and all N large enough, is impossible due to (41) and (44). Here we
bear on the observation that Lz(x) < 0 for z ≤ t and Lz(x) > 0 for z > max{y : y ∈ J(x)}. Consequently we can apply
Corollary 2 with i = t and j = max{y : y ∈ J(x)} because by Lemma 2 this choice guarantees the validity of (37). �
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Example 2. Now we will stipulate that the penalty function ψ is unknown. Assume that, for a sequence of sets (WN)N∈N
such that WN ⊂ {1, . . . ,N} and ♯WN → ∞ as N → ∞, there exists a sequence of random variables (ψ(y, ξN(WN)))N∈N
satisfying for every y ∈ Y the relation

ψ(y, ξN(WN)) → ψ(y) a.s., N → ∞. (45)

For x ∈ X and N ∈ N, introduce the random vectors wWN (x, ω) andLWN (x, ω)with the components

wWN
y (x, ω) :=

ψ(y, ξN(WN))

♯WN


j∈WN

I{Y j
= y, X j

= x}, (46)

LWN
y (x, ω) := (wWN (x, ω))⊤∆(y), y ∈ Y, (47)

respectively. Now defineA WN
y (ω) by way of (41) where instead ofLWN

y (x, ω) one usesLWN
y (x, ω), y ∈ Y, x ∈ X, ω ∈ Ω and

N ∈ N. SetfPA(x, ξN(WN)) =


y∈Y

y I{x ∈ A WN
y (ω)}. (48)

Similarly to Example 1 we can show that f = fopt where fopt is defined in (11) andfPA given by (48) satisfies conditions of
Corollary 2 with U introduced in (43).

In [26] the following choice of a penalty function ψ was proposed when a binary response variable Y takes values −1
and 1

ψ(y) = c (P(Y = y))−1, y ∈ Y, c = const > 0. (49)

Assuming here that P(Y = y) > 0 for y ∈ Y one can take c = 1 in (49) without loss of generality. In [2] it was explained
that this choice is natural. For general case Y = {−m, . . . ,m} (m ∈ N) we also consider the penalty function given by (49)
(with c = 1 and P(Y = y) > 0 for any y ∈ Y). For y ∈ Y and N ∈ N, set AWN (y) = {Y j

≠ y for all j ∈ WN},

PWN (Y = y) =
1

♯WN


j∈WN

I{Y j
= y},

ψ(y, ξN(WN)) =
1 − I{AWN (y)}PWN (Y = y)

(50)

where 0/0 := 0, as usual. Then (45) holds since I{AWN (y)} → 0 a.s., for each y ∈ Y, when N → ∞. Therefore, by virtue of
(45) we see that, for k = 1, . . . , K , relation (15) holds. �

Remark 6. Recall that in medical applications the response function Y often describes the health state of a patient. Namely,
for binary variable the values 1 and −1 mean ‘‘sick’’ and ‘‘healthy’’ (‘‘control’’), respectively. If Y takes values in the set
{−1, 0, 1} then values 1 and−1have the samemeaning and the value 0 describes the ‘‘intermediate state’’, that is one cannot
decide whether disease (will) appears or not. Thus for this important case of ternary response variable Corollary 1 provides
the criterion of (18) validity involving asymptotic behavior of fPA and properties of functions L0(x), L1(x) for x ∈ X \ U .

Now we discuss the problem of a penalty function ψ choice. It was mentioned above that (49) is appropriate for binary
response variable Y with values −1 and 1. Namely, in [2] it was shown that if we assume that fPA does not capture the
dependence of Y on X outside the ‘‘good’’ set U (i.e. such set that (17) holds) then the independence of events {Y = 1}
and {X = x} for x ∈ X \ U naturally leads (see Corollary 1 in [2]) to formula (49). However for Y taking values in the set
Y = {−m, . . . ,m} with m ∈ N the situation is more complicated. If we want (in a similar way to the case of binary Y ) to
have Ly(x) = 0 for any y ∈ Y, y > −m, and x ∈ X \ U then we see that it is equivalent to relations

ψ(y)P(Y = y, X = x) = 0, −m < y < m, (51)

ψ(−m)P(Y = −m, X = x) = ψ(m)P(Y = m, X = x). (52)

Thus if we assume that events {Y = y} and {X = x} are independent for y ∈ Y and x ∈ X \ U then (52) is satisfied when
(49) holds for y ∈ {−m,m} whereas (51) meansψ(y)P(Y = y) = 0 if P(X ∈ X \ U) > 0. Therefore (51) is valid ifψ(y) = 0
when P(Y = y) ≠ 0. Thus in this way for general Y one cannot justify the choice ofψ(y) provided by (49). If Y = {−1, 0, 1}
then the choice ofψ(y) according to (49) for y ∈ {−1, 1} andψ(0) = 0 can be viewed as possible when one can say that we
lose nothing in the ‘‘intermediate’’ case corresponding to Y = 0. Note that the choice of ψ by (49) is attractive if we want
to take into account the rare values of Y . We also emphasize that in Corollary 2 we did not suppose that Ly(x) = 0 for any
y ∈ Y, y > −m, and x ∈ X \ U .
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5. Dimensionality reduction

For many models it is natural to assume that response variable Y depends only on some factors Xk1 , . . . , Xkr where
1 ≤ k1 < · · · < kr ≤ n. In other words, for any x = (x1, . . . , xn) ∈ M and y ∈ Y,

P(Y = y|X1 = x1, . . . , Xn = xn) = P(Y = y|Xk1 = xk1 , . . . , Xkr = xkr ). (53)
In the framework of medical applications it means that the factors Xk1 , . . . , Xkr can be viewed as essential for provoking
complex disease whereas the impact of others can be neglected. Any collection of such indexes {k1, . . . , kr} is called
significant. Clearly, if {k1, . . . , kr} is a significant collection and if {k1, . . . , kr} ⊂ {m1, . . . ,mp} ⊂ {1, . . . , n} then
{m1, . . . ,mp} is significant as well.

For r = 1, . . . , n, set Xr = {0, 1 . . . , s}r . Thus X = Xn. Further we write α = (k1, . . . , kr), Xα = (Xk1 , . . . , Xkr ) and
xα = (xk1 , . . . , xkr )where xi ∈ {0, . . . , s}, i = 1, . . . , n. For x ∈ M and y ∈ Y, formula (53) can be written as follows

P(Y = y|X = x) = P(Y = y|Xα = xα). (54)
Here P(X = xα) ≥ P(X = x) > 0 as x ∈ M . For x ∈ X and y ∈ Y, let us define the vectorwα(x)with the components

wαy (x) =


ψ(y)P(Y = y, Xα = xα), x ∈ M,
0, x ∉ M. (55)

Note that (7) and (9) imply that, for each y ∈ Y, y > −m, one has Ly(x) = 0 if x ∉ M . Introduce the functions Lαy (x) according
to (9) where instead ofw(x)we usewα(x). In other words, for x ∈ X,

Lαy (x) = (wα(x))⊤∆(y) = wα
−m(x)+ · · · + wαy−1(x)− wαy (x)− · · · − wαm(x)

where y ∈ Y, y > −m. Then (54) yields that, for any x ∈ M and y = −m + 1, . . . ,m, one has
Ly(x) = (wα(x))⊤∆(y)P(X = x)/P(Xα = xα).

Consequently, Ly(x) and Lαy (x) for x ∈ X and y ∈ Y take positive or negative values or vanish simultaneously.
If (54) is valid then according to (11) the optimal function fopt coincides with

f α(x) =


y∈Y

y I{x ∈ Aαy } (56)

where

x ∈ Aαy ⇐⇒


Lα
−m+1(x) ≥ 0, y = −m,
Lαy+1(x) ≥ 0, Lαy (x) < 0, y ≠ ±m,
Lαm(x) < 0, y = m.

(57)

for every x ∈ X. Actually, f α(x) depends on xα only.
Now take any β = (m1, . . . ,mr) where 1 ≤ m1 < · · · < mr ≤ n and apply (55)–(57) with β instead of α (we do not

assume that collection {m1, . . . ,mr} is significant). Thus we obtain the function f β(x). Note that Aβy , y ∈ Y, form a partition
of X (see (57) with α replaced by β) and we conclude that f β(x) is defined correctly for x ∈ X. Moreover, if the collection
of indexes α is significant then optimality of f α implies that for any β = (m1, . . . ,mr) with 1 ≤ m1 < · · · < mr ≤ n the
following inequality is true

Err(f α) ≤ Err(f β). (58)
Letψ be a penalty function. For anyβ = (m1, . . . ,mr)where 1 ≤ m1 < · · · < mr ≤ n, x ∈ X and a setWN ⊂ {1, . . . ,N},

introduce the random vector wβ,WN (x, ω)with the components

wβ,WN
y (x, ω) =

ψ(y)
♯WN


j∈WN

I{Y j
= y, X j

β = xβ}, y ∈ Y. (59)

Let the prediction algorithm be defined by the functionf βPA such thatf βPA(x, ξN(WN , ω)) =


y∈Y

y I{x ∈ Aβ,WN
y (ω)} (60)

where

x ∈ Aβ,WN
y (ω) ⇐⇒


Lβ,WN

−m+1(x, ω) ≥ 0, y = −m,Lβ,WN
y+1 (x, ω) ≥ 0, Lβ,WN

y (x, ω) < 0, y ≠ ±m,Lβ,WN
m (x, ω) < 0, y = m,

(61)

and Lβ,WN
y (x, ω) := (wβ,WN (x, ω))⊤∆(y). (62)

We write ω in (59)–(62) to emphasize the randomness of variables under consideration.
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Lemma 3. Let f = f β be defined by (56) (with β instead of α). Then for any β = (m1, . . . ,mr), 1 ≤ m1 < · · · < mr ≤ n, and
fPA =f βPA, relation (16) holds when sets WN ⊂ {1, . . . ,N} are such that ♯WN → ∞ as N → ∞. If, moreover, condition (29) is
satisfied then ErrK (fPA, ξN) is an asymptotically unbiased estimate of Err(f ) as N → ∞.

Proof. For u ∈ Xr and vp ∈ (X × Y)p, introduce the functions

f ∗(u) := f (x), f ∗

PA(u, vp) := fPA(x, vp)

where u = xβ . Note that, for each x ∈ X,wβ(x) depends only on xβ . Therefore f ∗ and f ∗

PA are defined correctly as f (x) = f (d)
and fPA(x, vp) = fPA(d, vp) for any vp ∈ (X × Y)p (1 ≤ p ≤ N) and x, d ∈ X such that xβ = dβ . Take

U = {x ∈ X : Lβy (x) ≠ 0 for all y ∈ Y, y > −m}. (63)

For x, d ∈ X and y ∈ Y, one has Lβy (x) = Lβy (d) if xβ = dβ . Introduce U∗
= {xβ : x ∈ U}. Thus we can apply reasoning as in

Example 1 and Corollary 2 for f ∗ and f ∗

PA defined on Xr with Xβ , U∗, Xr(t,U∗) instead of X , U and X(t,U), respectively. To
get the second statement of this lemma we use Remark 5. The proof is complete. �

Now in a similar way to (46) we define

wβ,WN
y (x, ω) :=

ψ(y, ξN(WN))

♯WN


j∈WN

I{Y j
= y, X j

β = xβ}, y ∈ Y. (64)

Set, for x ∈ X, y ∈ Y, y > −m, and N ∈ N,Lβ,WN
y (x, ω) := (wβ,WN (x, ω))⊤∆(y). (65)

Introducef βPA(x, ξN(WN)) =


y∈Y

y I{x ∈ Aβ,WN
y (ω)} (66)

whereAβ,Ny (ω) is defined by (61) with replacement ofLβ,WN
y (x, ω) byLβ,WN

y (x, ω).

Remark 7. It is easily seen that the assertion of Lemma 3 is valid if we choose fPA =f βPA instead of fPA =f βPA.
Theorem 2. Let α = (k1, . . . , kr) where a significant collection {k1, . . . , kr} ⊂ {1, . . . , n}. Then, for any ε > 0 and each
β = (m1, . . . ,mr) with {m1, . . . ,mr} ⊂ {1, . . . , n}, the following inequality holdsErrK (f αPA, ξN) ≤ ErrK (f βPA, ξN)+ ε a.s. (67)

for all N large enough.

Proof. In view of Remark 7 this statement follows from Lemma 3 and relation (58). �

Remark 8. Theorem 2 suggests that it is reasonable to select for further analysis each collection {k1, . . . , kr} ⊂ {1, . . . , n}
as significant if ErrK (f αPA, ξN) with α = (k1, . . . , kr) has minimal value (or near the minimal value) among all ErrK (f βPA, ξN)
where β = (m1, . . . ,mr) and {m1, . . . ,mr} ⊂ {1, . . . , n}. It is essential that we established relation (67) almost surely as
we have to compare ErrK (f βPA, ξN) for various β = (m1, . . . ,mr) simultaneously. Usually one considers models with large
number of explanatory variables where the collection of significant factors is rather small. To estimate the predictive power
of algorithm one uses the permutation tests, see, e.g., [8], possibly along with simulation. The measure of importance of
subsets of factors is treated, e.g., in [22].

It is desirable to estimate the difference between ErrK (f βPA, ξN) and Err(f β) as N → ∞. This problem is considered in the
next section for regularized versions of estimates.

6. Central limit theorem

Let β = (m1, . . . ,mr) where 1 ≤ m1 < · · · < mr ≤ n. We define the functions which can be viewed as the regularized
versions of the estimatesf βPA of f β (see (66) and (56)). Namely, for ε = (εN)N∈N with non-randompositive εN → 0 asN → ∞,
put f βPA,ε(x, ξN(WN)) =


y∈Y

y I{x ∈ Aβ,WN
y,ε (ω)}

where

WN ⊂ {1, . . . ,N}, ♯WN → ∞, N → ∞, (68)
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and

x ∈ Aβ,WN
y,ε (ω) ⇐⇒


Lβ,WN

−m+1(x, ω)+ εN ≥ 0, y = −m,Lβ,WN
y+1 (x, ω)+ εN ≥ 0, Lβ,WN

y (x, ω)+ εN < 0, y ≠ ±m,Lβ,WN
m (x, ω)+ εN < 0, y = m.

HereLβ,WN
y (x, ω) (for y ∈ Y, y > −m and ω ∈ Ω) is defined in (65). To simplify notation we writeAβ,WN

y,ε (ω) instead ofAβ,WN
y,εN (ω). Note that assertion of Lemma 3 will be valid if we replacef βPA byf βPA,ε .
Now we turn to the central limit theorem for ErrK (f βPA,ε, ξN). In contrast to [3] we will consider not only nonbinary re-

sponse variable Y but also an arbitrary penalty function ψ . It is quite natural that in this case we make some assumptions
concerning the joint asymptotic behavior (as N → ∞) of estimates ψ(y, ξN(WN)), y ∈ Y, and random variables Y j, f β(X j)
with j ∈ WN .

For N ∈ N andWN setθN :=

(ψ(N))⊤, (a (N,−m))⊤, . . . , (a (N,m))⊤⊤

where ψ(N) is the random vector with components ψy(N) = ψ(y, ξN(WN)), y ∈ Y, anda (N, z), z ∈ Y, are random vectors
with components

ay(N, z) =
1

♯WN


j∈WN

I{Y j
= z, f β(X j) = y}, y ∈ Y.

To simplify notation we often write ψ(N), θN anda(N, z) instead of ψ(N,WN), θN(WN) andaβ (N, z,WN), respectively.
Define also

θ :=

ψ⊤, (a(−m))⊤, . . . , (a(m))⊤

⊤

where ψ is non-random vector with components ψy = ψ(y), y ∈ Y, and a(z), z ∈ Y, are non-random vectors with compo-
nents ay(z) = P(Y = z, f β(X) = y), y ∈ Y. The same symbol is used here for a penalty function and a vector ψ because we
simply arrange all values of a penalty function in a column. Note thatθN and θ are vectors of dimension (2m + 1)(2m + 2).
We also introduce vector ν with components νy = (a(y))⊤q(y), y ∈ Y, and vectors γ (z) = ψ(z)q(z), z ∈ Y. So, we can
formulate the CLT.

Theorem 3. Let εN → 0 and N1/2εN → ∞ as N → ∞. Take any vector β = (m1, . . . ,mr)with 1 ≤ m1 < . . . < mr ≤ n, the
corresponding function f = f β and prediction algorithm defined by fPA =f βPA,ε . Assume that for any sets WN satisfying (68) one
has 

♯WN(θN(WN)− θ)
law

−→ R ∼ N (0, C), N → ∞, (69)

where N (0, C) stands for the multidimensional normal law. Then the following relation holds
√
N(ErrK (fPA, ξN)− Err(f ))

law
−→ Z ∼ N (0, σ 2), N → ∞. (70)

Here σ 2
= λ⊤Cλ and λ :=


ν⊤, (γ (−m))⊤, . . . , (γ (m))⊤

⊤
.

Proof. For a fixed K ∈ N and any N ∈ N set

TN(f ) :=
1
K

K
k=1

1
♯Sk(N)

2m−1
i=0


i−m<|y|≤m

ψ(y)


j∈Sk(N)

I{Y j
= y, |f (X j)− y| > i},

TN(f ) :=
1
K

K
k=1

1
♯Sk(N)

2m−1
i=0


i−m<|y|≤m

ψN,k(y)


j∈Sk(N)

I{Y j
= y, |f (X j)− y| > i}

where ψN,k(y) = ψ(y, ξN(Sk(N))). One hasErrK (fPA, ξN)− Err(f ) = (ErrK (fPA, ξN)−TN(f ))+ (TN(f )− TN(f ))+ (TN(f )− Err(f )).

First of all we show that
√
N(ErrK (fPA, ξN)−TN(f )) P

−→ 0, N → ∞. (71)

Using (21) one can write

ErrK (fPA, ξN)−TN(f ) =
1
K

K
k=1

1
♯Sk(N)

2m−1
i=0


i−m<|y|≤m

ψN,k(y)


j∈Sk(N)

I{Y j
= y}F (i)N,k(X

j, y). (72)
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We define the random variables

G(i)N,k(y) :=
1

√
♯Sk(N)


j∈Sk(N)

I{Y j
= y}F (i)N,k(X

j, y)

and verify that for each k = 1, . . . , K

2m−1
i=0


i−m<|y|≤m

ψN,k(y)G
(i)
N,k(y)

P
−→ 0, N → ∞. (73)

Clearly (73) implies (71) in view of (72) as ♯Sk(N) = [N/K ] for k = 1, . . . , K − 1 and [N/K ] ≤ ♯SK (N) < [N/K ] + K . For
each i,N, k under consideration and U defined by (63) write G(i)N,k(y) = G(i),UN,k (y)+ G(i),X\U

N,k (y)where

G(i),VN,k (y) =
1

√
♯Sk(N)


j∈Sk(N)

I{X j
∈ V }I{Y j

= y}F (i)N,k(X
j, y), V ⊂ X.

Obviously,

|G(i),UN,k (y)| ≤


♯ Sk(N)


x∈U

I{|fPA(x, ξN(Sk(N)))− y| > i} − I{|f (x)− y| > i}
.

Functions fPA and f take values in the set Y. Thus, for any x ∈ U , k = 1, . . . , K and almost all ω ∈ Ω relation (17) with
U given by (63) ensures the existence of an integer N1(x, k, ω) such that fPA(x, ξN(Sk(N))) = f (x) for N ≥ N1(x, k, ω).
Hence G(i),UN,k (y) = 0 for any y belonging to Y, each i = 0, . . . , 2m − 1, k = 1, . . . , K and almost all ω ∈ Ω when
N ≥ N1(ω) = maxx∈U,k=1,...,K N1(x, k, ω). Evidently, N1 < ∞ a.s. because ♯X < ∞. We obtain that

2m−1
i=0


i−m<|y|≤m

ψN,k(y)G
(i),U
N,k (y) → 0 a.s., N → ∞. (74)

If U = X then G(i),X\U
N,k (y) = 0 for all i, N , k and y under consideration. Consequently, (73) is valid and thus, for U = X,

relation (71) holds. Let now U ≠ X. In view of (4) we can claim that

X \ U = ∪J⊂Y,♯J>1 BJ . (75)

We have seen in Section 2 that each BJ appearing in (75) can be represented by way of BJ = Dt,z , for some t, z ∈ Y such that
t < z, with J = {y ∈ Y : t ≤ y ≤ z} and

Dt,z := {x ∈ X \ U : Lβy (x) < 0,−m < y ≤ t; Lβy (x) = 0, t < y ≤ z; Lβy (x) > 0, y > z}. (76)

Then for k = 1, . . . , K and N ∈ N one has
2m−1
i=0


i−m<|y|≤m

ψN,k(y)G
(i),X\U
N,k (y) =

m
z=−m+1

z−1
t=−m


x∈Dt,z

2m−1
i=0


i−m<|y|≤m

Φ
(i)
N,k(x, y).

Here

Φ
(i)
N,k(x, y) :=

ψN,k(y)
√
♯Sk(N)


j∈Sk(N)

I{X j
= x, Y j

= y}F (i)N,k(x, y).

Using (27), (28) and (35) we come to the formula

2m−1
i=0


i−m<|y|≤m

Φ
(i)
N,k(x, y) =


♯Sk(N) (LSk(N)(x))⊤I(N, x, k, t)

where the components of random vector I(N, x, k, t) are given in (30).
If x ∈ (X \ U) ∩ (X \ M) then Φ(i)

N,k(x, y) = 0 a.s. for all i, N , k and y under consideration. Let now x ∈ (X \ U) ∩ M ,
i.e. x ∈ M ∩ Dt,z for some t, z ∈ Y such that t < z. Then f (x) = t according to (76). We will show that

♯Sk(N) (LSk(N)(x))⊤I(N, x, k, t) P
−→ 0, N → ∞. (77)

One has (LSk(N)(x))⊤I(N, x, k, t) =R(1)N,k(x, t)+R(2)N,k(x, t)where

R(l)N,k(x, t) =

(l)LSk(N)y (x)Iy(N, x, k, t), l = 1, 2.
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Here
(1) and

(2) are taken over y ∈ (Y \ {−m}) \ (t, z] and y ∈ (Y \ {−m}) ∩ (t, z], respectively. Clearly,

|R(1)N,k(x, t)| ≤

(1)
I{fPA(x, ξN(Sk(N))) ∉ [t, z]} |LSk(N)y (x)|.

For any x ∈ Dt,z , k = 1, . . . , K and almost all ω ∈ Ω relations (65) and (66) ensure the existence of an integer N3(x, k, ω)
such that fPA(x, ξN(Sk(N), ω)) ∈ [t, z] for N ≥ N3(x, k, ω). HenceR(1)N,k(x, ω) = 0 for any x ∈ Dt,z , each k = 1, . . . , K and
almost all ω ∈ Ω when N ≥ N3(ω) = maxx∈Dt,z ,k=1,...,K N3(x, k, ω). Thus

♯ Sk(N)R(1)N,k(x, t) → 0 a.s., N → ∞. (78)

Further on

|R(2)N,k(x, t)| ≤

(2)
I{fPA(x, ξN(Sk(N))) ≠ t} |LSk(N)y (x)|. (79)

Let us prove that, for any x ∈ M ∩ Dt,z and k = 1, . . . , K ,

I{fPA(x, ξN(Sk(N))) ≠ t}
P

−→ 0, N → ∞. (80)

For any ~ > 0 we have

P(I{fPA(x, ξN(Sk(N))) ≠ t} > ~) = P

{Lβ,Sk(N)t (x)+ εN ≥ 0} ∪ {Lβ,Sk(N)t+1 (x)+ εN < 0}


.

For almost every ω ∈ Ω there exists a positive integer N4 = N4(x, k, ω) such that the inequalityLβ,Sk(N)t (x, ω) + εN < 0
holds for x ∈ Dt,z and N ≥ N4. Taking into account that, for any events F and H , one has I{F ∪ H} = I{F} + I{H} − I{F ∩ H}

we see that validity of (80) is equivalent to

P(Lβ,Sk(N)t+1 (x)+ εN < 0) → 0, N → ∞,

or

P

♯Sk(N)Lβ,Sk(N)t+1 (x) < −εN


♯Sk(N)


→ 0, N → ∞. (81)

Consider setsWN ⊂ {1, . . . ,N} such that ♯WN → ∞ as N → ∞. Obviously, for any x ∈ X and y ∈ Y,Lβ,WN
y (x) =Lβ,WN

y (x)+
Lβ,WN

y (x)−Lβ,WN
y (x)


(82)

and

Lβ,WN
y (x) =

1
♯WN


j∈WN

Lβ,jy (x).

Here we writeLβ,jy (x) instead ofLβ,{j}y (x). One has ELβ,jy (x) = Lβy (x) = 0 for all j ∈ N, x ∈ Dt,z and y ∈ (t, z]. The CLT holds
for an array of bounded centered i.i.d. random variables {Lβ,jy (x), j ∈ WN ,N ∈ N}. Namely, for a given β and all considered
x and y,

ZN,1(x, y;β) :=

♯WN Lβ,WN

y (x)
law

−→ Z1(x, y;β) ∼ N (0, σ 2
1 (x, y;β)), N → ∞, (83)

where σ 2
1 (x, y;β) = varLβ,jy (x), j ∈ WN . Further on
♯WN(wβ,WN

y (x)− wβ,WN
y (x)) = (ψ(y, ξN(WN))− ψ(y))

1
√
♯WN


j∈WN

I{X j
β = xβ , Y j

= y}.

= HN,2(x, y;β)+ HN,3(x, y;β)

where

HN,2(x, y;β) = (ψ(y, ξN(WN))− ψ(y))

♯WNP(Xβ = xβ , Y = y),

HN,3(x, y;β) = (ψ(y, ξN(WN))− ψ(y))
1

√
♯WN


j∈WN

(I{X j
β = xβ , Y j

= y} − EI{X j
β = xβ , Y j

= y}).

For i = 2, 3, we consider the random vector HN,i(x;β)with components HN,i(x, y;β), y ∈ Y. In view of (69) we know that

HN,2(x;β)
law

−→ H2(x;β) ∼ N (0, C2(x;β)), N → ∞.
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Here the matrix C2(x;β) has entries du,vµuµv and D = (du,v) is the matrix coinciding with (2m + 1)× (2m + 1) left upper
corner of the initial matrix C introduced in (69), the vector µ = µ(x;β) has components µu = P(Xβ = xβ , Y = u) and
u, v ∈ Y.

Due to SLLNA one has

1
♯WN


j∈WN

(I{X j
β = xβ , Y j

= y} − EI{X j
β = xβ , Y j

= y}) → 0 a.s., N → ∞.

Hence, for any x, y ∈ Y,

HN,3(x, y;β)
P

−→ 0, N → ∞. (84)

We can write
♯WN

Lβ,WN
y (x)−Lβ,WN

y (x)


= ZN,2(x, y;β)+ ZN,3(x, y;β) (85)

where according to (42) and (47)

ZN,i(x, y;β) = (HN,i(x;β))⊤∆(y), i = 2, 3.

Consequently,

ZN,2(x, y;β)
law

−→ Z2(x, y;β) ∼ N (0, σ 2
2 (x, y;β)), N → ∞,

with σ 2
2 (x, y;β) = (∆(y))⊤C2(x;β)∆(y). By virtue of (84)

ZN,3(x, y;β)
P

−→ 0, N → ∞. (86)

Thus in view of (82), (83) and (85), for each y ∈ (t, z] and x ∈ Dt,z , we have

P

♯WNLβ,WN

y (x) < −εN

♯WN


≤

3
i=1

P

ZN,i(x, y;β) < −

εN

3


♯WN


. (87)

Let (ZN)N∈N be a sequence of random variables such that ZN
law

−→ Z asN → ∞where Z has a (possibly degenerate) Gaus-
sian distribution. Then, for any sequence of real numbers (cN)N∈N satisfying relation cN → −∞, one has P(ZN < cN) → 0,
N → ∞. The latter statement becomes obvious if Z is degenerate. For Z having continuous distribution function we take
into account that the distribution functions of ZN , N ∈ N, converge to the distribution function of Z uniformly on R. Hence,
taking (εN)N∈N such that εN

√
♯WN → ∞, as N → ∞, we establish that the right-hand side of (87) tends to 0.

Put y = t + 1 (it is possible because y ∈ (t, z] ∩ Y where t, z ∈ Y and t < z), WN = Sk(N), k = 1, . . . , K . Note that
♯Sk(N) ≥ (K − 1)[N/K ] for each k = 1, . . . , K . We conclude that (81) is satisfied when εNN1/2

→ ∞ as N → ∞. Thus, we
come to (80).

Note that,LWN
y (x) = Lβ,WN

y (x) if β = (1, . . . , n), for x ∈ X and y ∈ Y such that y > −m. Therefore using (82)–(86) we
obtain, for x ∈ Dt,z and y ∈ (t, z] ∩ Y, the estimate


♯WN |LWN

y (x)| ≤

3
i=1

|ZN,i(x, y)| (88)

where ZN,i(x, y) is the same as ZN,i(x, y;β) evaluated for β = (1, . . . , n) and i = 1, 2, 3. Hence setting now WN = Sk(N)
we see that (78)–(88) lead to (77). Thus we have

2m−1
i=0


i−m<|y|≤m

ψN,k(y)G
(i),X\U
N,k (y)

P
−→ 0, N → ∞. (89)

Taking into account (74) and (89) we come to (73). Consequently, (71) is verified.
Now we turn to the study ofTN(f )− TN(f ). One has

√
N(TN(f )− TN(f ))

=

√
N
K

K
k=1

1
♯Sk(N)

2m−1
i=0


i−m<|y|≤m

(ψN,k(y)− ψ(y))


j∈Sk(N)

I{Y j
= y, |f (X j)− y| > i}.
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Put Z j
i (y) = I{Y j

= y, |f (X j)− y| > i}, i = 0, . . . , 2m − 1, j = 1, . . . ,N , y ∈ Y. For each k = 1, . . . , K

√
N

2m−1
i=0


i−m<|y|≤m

(ψN,k(y)− ψ(y))
1

♯ Sk(N)


j∈Sk(N)

I{Y j
= y, |f (X j)− y| > i}

=
√
N

2m−1
i=0


i−m<|y|≤m

(ψN,k(y)− ψ(y))
1

♯ Sk(N)


j∈Sk(N)

(Z j
i (y)− EZ j

i (y))

+
√
N

2m−1
i=0


i−m<|y|≤m

(ψN,k(y)− ψ(y))P(Y = y, |f (X)− y| > i).

Since N/♯ Sk(N) → K for each k = 1, . . . , K , as N → ∞, we conclude, taking into account SLLNA and relation (69), that

√
N

2m−1
i=0


i−m<|y|≤m

(ψN,k(y)− ψ(y))
1

♯ Sk(N)


j∈Sk(N)

(Z j
i (y)− EZ j

i (y))
P

−→ 0, N → ∞.

We can write
2m−1
i=0


i−m<|y|≤m

(ψN,k(y)− ψ(y))P(Y = y, |f (X)− y| > i)

=


y∈Y

(ψN,k(y)− ψ(y))(a(y))⊤q(y) = (ψ(N, Sk(N))− ψ)⊤ν.

Consequently the limit distribution of
√
N[(TN(f )− TN(f ))+ (TN(f )−Err(f ))]will be the same as that for random variables

√
N[(TN(f )− Err(f ))+

1
K

K
k=1

(ψ(N, Sk(N))− ψ)⊤ν].

Note that

(TN(f )− Err(f )) =
1
K

K
k=1


z∈Y

ψ(z)(a(N, z, Sk(N))− a(z))⊤q(z)

=
1
K

K
k=1


z∈Y

(a(N, z, Sk(N))− a(z))⊤γ (z).

Therefore

√
N[(TN(f )− Err(f ))+

1
K

K
k=1

(ψ(N, Sk(N))− ψ)⊤ν] =

√
N
K

K
k=1

(θN(Sk(N))− θ)⊤λ.

According to (69), for each k = 1, . . . , K , one has
♯Sk(N)(θN(Sk(N))− θ)⊤λ

law
−→ Rk ∼ N(0, λ⊤Cλ).

Since, for each N ∈ N, collections of random variables ξN(S1(N)), . . . , ξN(SK (N)) are independent we can claim that
R1, . . . , RK are independent. Again recalling that N/♯Sk(N) → K for k = 1, . . . , K , as N → ∞, we come to (70). The
proof is complete. �

Remark 9. In Theorem 3 we can relax condition (69) by employing only WN = Sk(N) and WN = Sk(N) for k = 1, . . . , K
and N ∈ N.

Corollary 3. Let ψ be the penalty function defined in (49) and ψN,k(y) be the estimate introduced in (50) with WN = Sk(N),
k = 1, . . . , K where K ∈ N. Let εN → 0 and N1/2εN → ∞ as N → ∞. Then, for any vector β = (m1, . . . ,mr) with
1 ≤ m1<. . .<mr ≤n, the corresponding function f = f β and prediction algorithm defined by fPA =f βPA,ε , the following relation
holds

√
N(ErrK (fPA, ξN)− Err(f ))

law
−→ Z ∼ N (0, σ 2), N → ∞. (90)

Here σ 2 is variance of the random variable

V =

2m−1
i=0


i−m<|y|≤m

I{Y = y}
P(Y = y)


I{|f (X)− y| > i} − P(|f (X)− y| > i

Y = y)

. (91)
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It is easily seen that conditions of Theorem 3 are satisfied for this particular but important choice ofψ and its estimates.
However, it seems more simple to note that, for each y ∈ Y and k = 1, . . . , K ,PSk(N)(Y = y)

P
−→ P(Y = y),

♯Sk(N)(PSk(N)(Y = y)− P(Y = y))
law

−→ Z4(y) ∼ N (0, σ 2
4 (y)),

as N → ∞, where σ 2
4 (y) = P(Y ≠ y)P(Y = y). Then one can employ the Slutsky lemma to show that the limit behavior of

√
N[(TN(f )− TN(f ))+ (TN(f )− Err(f ))] will be the same as for

√
N
K

K
k=1

1
♯Sk(N)


j∈Sk(N)

(V j
− EV j)

where i.i.d. random variables V j, j ∈ N are defined by way of

V j
=

2m−1
i=0


i−m<|y|≤m

I{Y j
= y}

P(Y = y)


I{|f (X j)− y| > i} −

P(Y = y, |f (X)− y| > i)
P(Y = y)


.

Thus we come to the statement of Corollary 3.
Recall that for a sequence of random variables (ηN)N∈N and a sequence of positive numbers (cN)N∈N one writes ηN =

oP(cN) if ηN/cN
P

−→ 0, N → ∞.

Remark 10. As usual one can view the CLT as a result describing the exact rate of approximation for random variables under
consideration. Theorem 3 implies thatErrK (fPA, ξN)− Err(f ) = oP(cN), N → ∞, (92)

where cN = o(N−1/2). The last relation is optimal in a sense whenever σ 2 > 0, in other words it is impossible to take
cN = O(N−1/2) in (92). One can verify that the same asymptotic result as in Corollary 3 is true if ψN,k(y) is defined according
to (50) with WN = Sk(N), k = 1, . . . , K , N ∈ N.

Remark 11. Using (91) or Theorem 3 one can show that

σ 2
=


y∈Y

1
(P(Y = y))2


(a(y))⊤(q(y) ◦ q(y))−

1
P(Y = y)


(a(y))⊤q(y)

2
where ◦ stands for the Hadamard product of two vectors, i.e. q(y) ◦ q(y) has components q(y)2z , z ∈ Y. Therefore it is not
difficult to construct the consistent estimates σN of unknown σ appearing in (90) and (if σ 2

≠ 0) we can claim that under
conditions of Corollary 3

√
NσN (ErrK (fPA, ξN)− Err(f ))

law
−→

Z
σ

∼ N (0, 1), N → ∞.

Now we consider the multidimensional version of Corollary 3. Employing the Cramér–Wold device and the proof of
Theorem 3 we come to the following statement.

Corollary 4. Let conditions of Corollary 3 be satisfied. Then, for anyα(l) = (m(l)
1 , . . . ,m

(l)
r ) such that 1 ≤ m(l)

1 < · · · < m(l)
r ≤ n

where l = 1, . . . , j, j ∈ N, and each K ∈ N, one has
√
N(Z (1)N , . . . , Z (j)N )

⊤ law
−→ Z ∼ N (0, B), N → ∞.

Here Z (l)N = ErrK (f α(l)PA,ε , ξN)− Err(f α(l)), l = 1, . . . , j, and the elements of covariance matrix B = (bl,p) have the form

bl,p = cov(V (α(l)), V (α(p))), l, p = 1, . . . , j,

the random variables V (α(l)) being defined in the same way as V in (91) with f β replaced by f α(l).

To conclude we note (see also Remark 11) that one can construct the consistent estimates BN of the unknown
(nondegenerate) covariance matrix B to obtain the statistical version of the last theorem. Namely, under conditions of
Corollary 4 the following relation is valid

(BN)
−1/2(Z (1)N , . . . , Z (j)N )

⊤ law
−→ B−1/2Z ∼ N (0, I), N → ∞,

where I stands for the unit matrix of order j.
It is worth mentioning that in [5] we demonstrate by simulation that our method leads to correct identification of

significant factors even for samples having rather modest size.
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